Home
Class 12
MATHS
If the eccentricity of the hyperbola (x^...

If the eccentricity of the hyperbola `(x^(2))/((1+sin theta)^(2))-(y^(2))/(cos^(2)theta)=1` is `(2)/(sqrt3)`, then the sum of all the possible values of `theta` is (where, `theta in (0, pi)`)

A

`(5pi)/(4)`

B

`(2pi)/(3)`

C

`(7pi)/(4)`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of all possible values of \(\theta\) given the eccentricity of the hyperbola \(\frac{x^2}{(1+\sin \theta)^2} - \frac{y^2}{\cos^2 \theta} = 1\) is \(\frac{2}{\sqrt{3}}\). ### Step-by-Step Solution: 1. **Identify the parameters of the hyperbola:** The standard form of a hyperbola is \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\). Here, we can identify: \[ a = 1 + \sin \theta, \quad b = \cos \theta \] 2. **Write the formula for eccentricity:** The eccentricity \(e\) of a hyperbola is given by: \[ e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{\cos^2 \theta}{(1 + \sin \theta)^2}} \] 3. **Set up the equation using the given eccentricity:** We know that: \[ e = \frac{2}{\sqrt{3}} \] Therefore, we can set up the equation: \[ \sqrt{1 + \frac{\cos^2 \theta}{(1 + \sin \theta)^2}} = \frac{2}{\sqrt{3}} \] 4. **Square both sides to eliminate the square root:** \[ 1 + \frac{\cos^2 \theta}{(1 + \sin \theta)^2} = \frac{4}{3} \] 5. **Rearrange the equation:** \[ \frac{\cos^2 \theta}{(1 + \sin \theta)^2} = \frac{4}{3} - 1 = \frac{1}{3} \] 6. **Cross-multiply to eliminate the fraction:** \[ 3\cos^2 \theta = (1 + \sin \theta)^2 \] 7. **Expand the right side:** \[ 3\cos^2 \theta = 1 + 2\sin \theta + \sin^2 \theta \] 8. **Use the identity \(\cos^2 \theta = 1 - \sin^2 \theta\):** Substitute \(\cos^2 \theta\): \[ 3(1 - \sin^2 \theta) = 1 + 2\sin \theta + \sin^2 \theta \] 9. **Rearrange the equation:** \[ 3 - 3\sin^2 \theta = 1 + 2\sin \theta + \sin^2 \theta \] \[ 0 = 4\sin^2 \theta + 2\sin \theta - 2 \] 10. **Divide the entire equation by 2:** \[ 0 = 2\sin^2 \theta + \sin \theta - 1 \] 11. **Factor the quadratic equation:** \[ (2\sin \theta + 2)(\sin \theta - 1) = 0 \] 12. **Solve for \(\sin \theta\):** \[ \sin \theta = 1 \quad \text{or} \quad 2\sin \theta + 2 = 0 \quad \Rightarrow \quad \sin \theta = -1 \] However, \(\sin \theta = -1\) is not in the interval \((0, \pi)\). 13. **Find the valid solution:** The only valid solution is: \[ \sin \theta = \frac{1}{2} \] This occurs at: \[ \theta = \frac{\pi}{6} \quad \text{and} \quad \theta = \frac{5\pi}{6} \] 14. **Sum the possible values of \(\theta\):** \[ \text{Sum} = \frac{\pi}{6} + \frac{5\pi}{6} = \frac{6\pi}{6} = \pi \] ### Final Answer: The sum of all possible values of \(\theta\) is \(\pi\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If eccentricity of the hyperbola (x^(2))/(cos^(2) theta)-(y^(2))/(sin^(2) theta)=1 is more than 2 when theta in (0,(pi)/2) . Find the possible values of length of latus rectum (a) (3,oo) (b) 1,3//2) (c) (2,3) (d) (-3,-2)

If (cos^(3) theta )/( (1- sin theta ))+( sin^(3) theta )/( (1+ cos theta ))=1+ cos theta , then number of possible values of theta is ( where theta in [0,2pi] )

If eccentricity of the hyperbola (x^(2))/(cos^(2) theta)-(y^(2))/(sin^(2) theta)=1 is move than 2 when theta in (0,(pi)/2) . Find the possible values of length of latus rectum (a) (3,oo) (b) 1,3//2) (c) (2,3) (d) (-3,-2)

If e is the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and theta is the angle between the asymptotes, then cos.(theta)/(2) is equal to

If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))) , then the value of theta is

If cos 2theta=(sqrt(2)+1)(cos theta-(1)/(sqrt(2))) , then the general value of theta(n in Z)

If the system of linear equations {:((cos theta)x + (sin theta) y + cos theta=0),((sin theta)x+(cos theta)y + sin theta=0),((cos theta)x + (sin theta)y -cos theta=0):} is consistent , then the number of possible values of theta, theta in [0,2pi] is :

If "cosec" theta = sqrt5 , find the value of : 2+1/(sin^2theta)-(cos^2theta)/(sin^2theta)

If theta in (pi//4, pi//2) and sum_(n=1)^(oo)(1)/(tan^(n)theta)=sin theta + cos theta , then the value of tan theta is

If sin theta = (1)/(2)cos theta , and 0 le theta le (pi)/(2) , the value of (1)/(2)sin theta is