Home
Class 12
MATHS
Let vec r xx veca = vec b xx veca and ve...

Let `vec r xx veca = vec b xx veca` and `vecc vecr=0`, where `veca.vecc ne 0`, then `veca.vecc(vecr xx vecb)+(vecb.vecc)(veca xx vecr)` is equal to __________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given vector equations and manipulate them using vector identities. ### Step-by-Step Solution: 1. **Given Equations**: We start with the equations: \[ \vec{r} \times \vec{a} = \vec{b} \times \vec{a} \] and \[ \vec{c} \cdot \vec{r} = 0 \] where \(\vec{a} \cdot \vec{c} \neq 0\). 2. **Cross Product Manipulation**: From the first equation, we can cross both sides with \(\vec{c}\): \[ \vec{c} \times (\vec{r} \times \vec{a}) = \vec{c} \times (\vec{b} \times \vec{a}) \] 3. **Using Vector Triple Product Identity**: We apply the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Thus, we have: \[ \vec{c} \times (\vec{r} \times \vec{a}) = (\vec{c} \cdot \vec{a}) \vec{r} - (\vec{c} \cdot \vec{r}) \vec{a} \] and \[ \vec{c} \times (\vec{b} \times \vec{a}) = (\vec{c} \cdot \vec{a}) \vec{b} - (\vec{c} \cdot \vec{b}) \vec{a} \] 4. **Setting the Equations Equal**: Since both expressions are equal, we can set them equal: \[ (\vec{c} \cdot \vec{a}) \vec{r} - 0 \cdot \vec{a} = (\vec{c} \cdot \vec{a}) \vec{b} - (\vec{c} \cdot \vec{b}) \vec{a} \] Simplifying this gives: \[ (\vec{c} \cdot \vec{a}) \vec{r} = (\vec{c} \cdot \vec{a}) \vec{b} - (\vec{c} \cdot \vec{b}) \vec{a} \] 5. **Rearranging the Terms**: Rearranging this equation leads to: \[ \vec{r} = \vec{b} - \frac{\vec{c} \cdot \vec{b}}{\vec{c} \cdot \vec{a}} \vec{a} \] 6. **Finding the Required Expression**: Now we need to find: \[ \vec{a} \cdot \vec{c} (\vec{r} \times \vec{b}) + (\vec{b} \cdot \vec{c})(\vec{a} \times \vec{r}) \] 7. **Substituting \(\vec{r}\)**: Substitute \(\vec{r}\) into the expression: \[ \vec{a} \cdot \vec{c} \left(\left(\vec{b} - \frac{\vec{c} \cdot \vec{b}}{\vec{c} \cdot \vec{a}} \vec{a}\right) \times \vec{b}\right) + (\vec{b} \cdot \vec{c})\left(\vec{a} \times \left(\vec{b} - \frac{\vec{c} \cdot \vec{b}}{\vec{c} \cdot \vec{a}} \vec{a}\right)\right) \] 8. **Simplifying the Expression**: After simplification, we can see that the terms involving \(\vec{a} \times \vec{b}\) and \(\vec{b} \times \vec{a}\) will cancel out, leading to: \[ 0 \] ### Final Answer: Thus, the expression \(\vec{a} \cdot \vec{c} (\vec{r} \times \vec{b}) + (\vec{b} \cdot \vec{c})(\vec{a} \times \vec{r})\) is equal to: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec r xx veca = vec b xx veca and vecc vec.r=0 , where veca.vecc ne 0 , then veca.vecc(vecr xx vecb)+(vecb.vecc)(veca xx vecr) is equal to __________.

Prove that veca*(vecb+vec c)xx (veca+3vecb+2vec c)=-(veca vecb vecc )

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If vecaxxvecb=vecc,vecb xx vecc=veca, where vecc != vec0, then

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 then (a) |veca|= |vecc| (b) |veca|= |vecb| (c) |vecb|=1 (d) |veca|=|vecb|= |vecc|=1

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to: