Home
Class 12
MATHS
If alpha is a root of the equation 4x^(2...

If `alpha` is a root of the equation `4x^(2)+3x-1=0` and `f(x)=4x^(2)-3x+1`, then `2(f(alpha)+(alpha))` is equal to

A

`-1`

B

0

C

`3/2`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(2(f(\alpha) + \alpha)\) where \(\alpha\) is a root of the equation \(4x^2 + 3x - 1 = 0\) and \(f(x) = 4x^2 - 3x + 1\). ### Step 1: Find the roots of the equation \(4x^2 + 3x - 1 = 0\) We can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 4\), \(b = 3\), and \(c = -1\). Calculating the discriminant: \[ b^2 - 4ac = 3^2 - 4 \cdot 4 \cdot (-1) = 9 + 16 = 25 \] Now substituting into the quadratic formula: \[ x = \frac{-3 \pm \sqrt{25}}{2 \cdot 4} = \frac{-3 \pm 5}{8} \] This gives us two roots: 1. \(x_1 = \frac{-3 + 5}{8} = \frac{2}{8} = \frac{1}{4}\) 2. \(x_2 = \frac{-3 - 5}{8} = \frac{-8}{8} = -1\) Thus, the roots are \(\alpha = \frac{1}{4}\) or \(\alpha = -1\). ### Step 2: Calculate \(f(\alpha)\) We will first calculate \(f(\alpha)\) for \(\alpha = \frac{1}{4}\): \[ f(x) = 4x^2 - 3x + 1 \] Substituting \(x = \frac{1}{4}\): \[ f\left(\frac{1}{4}\right) = 4\left(\frac{1}{4}\right)^2 - 3\left(\frac{1}{4}\right) + 1 \] Calculating: \[ = 4 \cdot \frac{1}{16} - \frac{3}{4} + 1 = \frac{1}{4} - \frac{3}{4} + 1 \] Finding a common denominator: \[ = \frac{1 - 3 + 4}{4} = \frac{2}{4} = \frac{1}{2} \] ### Step 3: Calculate \(2(f(\alpha) + \alpha)\) Now substituting \(f(\alpha) = \frac{1}{2}\) and \(\alpha = \frac{1}{4}\): \[ 2\left(f(\alpha) + \alpha\right) = 2\left(\frac{1}{2} + \frac{1}{4}\right) \] Finding a common denominator: \[ = 2\left(\frac{2}{4} + \frac{1}{4}\right) = 2\left(\frac{3}{4}\right) = \frac{3}{2} \] ### Step 4: Verify for \(\alpha = -1\) Now, let's check if we get a different result for \(\alpha = -1\): \[ f(-1) = 4(-1)^2 - 3(-1) + 1 = 4 + 3 + 1 = 8 \] Calculating: \[ 2(f(-1) + (-1)) = 2(8 - 1) = 2 \cdot 7 = 14 \] ### Conclusion Thus, for \(\alpha = \frac{1}{4}\), we have: \[ 2(f(\alpha) + \alpha) = \frac{3}{2} \] And for \(\alpha = -1\), we have: \[ 2(f(-1) + (-1)) = 14 \] Since the problem asks for \(2(f(\alpha) + \alpha)\) with \(\alpha\) being a root of the quadratic, we can conclude that the value is: \[ \boxed{\frac{3}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha is a roots equations 4x^2+2x-1=0andf(x)=4x^3-3x+1,then2(f(alpha)+alpha) is

If alpha is a real root of the equation x^(2)+3x-tan2=0 then cot^(-1)alpha+"cot"^(-1)1/(alpha)-(pi)/2 can be equal to

Let alpha be a root of the equation x ^(2) - x+1=0, and the matrix A=[{:(1,1,1),(1, alpha , alpha ^(2)), (1, alpha ^(2), alpha ^(4)):}] and matrix B= [{:(1,-1, -1),(1, alpha, - alpha ^(2)),(-1, -alpha ^(2), - alpha ^(4)):}] then the vlaue of |AB| is:

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha is a positive root of the equation x^4 +x^3 -4x^2 +x+1=0 then alpha +1/alpha

If alpha,beta are roots of the equation 3x^(2)+4x-5=0 , then (alpha)/(beta) and (beta)/(alpha) are roots of the equation

If alpha is a root of the equation 4x^2+2x-1=0, then prove that 4alpha^3-3alpha is the other root.

If alpha and beta are the roots of the equation 2x^(2) - 3x + 4 = 0 , then alpha^(2) + beta^(2) = ____

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha and beta are roots of the equation x^(2)+x+1=0 , then alpha^(2)+beta^(2) is equal to