Home
Class 12
MATHS
If the function f(x)=((1-x))/(2)tan.(pix...

If the function `f(x)=((1-x))/(2)tan.(pix)/(2)` is continuous at x = 1, then `f(1)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(1) \) for the function \( f(x) = \frac{(1-x)}{2} \tan\left(\frac{\pi x}{2}\right) \) and ensure that it is continuous at \( x = 1 \), we will follow these steps: ### Step 1: Determine the limit as \( x \) approaches 1 Since we want \( f(1) \) to be continuous, we need to find: \[ f(1) = \lim_{x \to 1} f(x) \] This means we need to evaluate: \[ \lim_{x \to 1} \frac{(1-x)}{2} \tan\left(\frac{\pi x}{2}\right) \] ### Step 2: Substitute \( x = 1 \) into the function Substituting \( x = 1 \) directly into \( f(x) \): \[ f(1) = \frac{(1-1)}{2} \tan\left(\frac{\pi \cdot 1}{2}\right) = \frac{0}{2} \tan\left(\frac{\pi}{2}\right) \] Since \( \tan\left(\frac{\pi}{2}\right) \) is undefined, we get an indeterminate form \( 0 \cdot \text{undefined} \). ### Step 3: Rewrite the limit using sine and cosine To resolve this, we can rewrite the tangent function: \[ \tan\left(\frac{\pi x}{2}\right) = \frac{\sin\left(\frac{\pi x}{2}\right)}{\cos\left(\frac{\pi x}{2}\right)} \] Thus, we have: \[ \lim_{x \to 1} \frac{(1-x)}{2} \cdot \frac{\sin\left(\frac{\pi x}{2}\right)}{\cos\left(\frac{\pi x}{2}\right)} \] ### Step 4: Apply L'Hôpital's Rule As \( x \) approaches 1, both the numerator and denominator approach 0, resulting in a \( \frac{0}{0} \) form. We can apply L'Hôpital's Rule: \[ \lim_{x \to 1} \frac{(1-x) \sin\left(\frac{\pi x}{2}\right)}{2 \cos\left(\frac{\pi x}{2}\right)} \] Differentiating the numerator and denominator separately: - The derivative of the numerator \( (1-x) \sin\left(\frac{\pi x}{2}\right) \) using the product rule: \[ \frac{d}{dx}[(1-x) \sin\left(\frac{\pi x}{2}\right)] = -\sin\left(\frac{\pi x}{2}\right) + (1-x) \cdot \frac{\pi}{2} \cos\left(\frac{\pi x}{2}\right) \] - The derivative of the denominator \( 2 \cos\left(\frac{\pi x}{2}\right) \) is: \[ -\pi \sin\left(\frac{\pi x}{2}\right) \] ### Step 5: Evaluate the limit again Now we evaluate: \[ \lim_{x \to 1} \frac{-\sin\left(\frac{\pi x}{2}\right) + (1-x) \cdot \frac{\pi}{2} \cos\left(\frac{\pi x}{2}\right)}{-\pi \sin\left(\frac{\pi x}{2}\right)} \] Substituting \( x = 1 \): \[ = \frac{-1 + 0 \cdot \frac{\pi}{2} \cdot 0}{-\pi \cdot 1} = \frac{-1}{-\pi} = \frac{1}{\pi} \] ### Conclusion Thus, the value of \( f(1) \) is: \[ f(1) = \frac{1}{\pi} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x) = (1-x) tan ""(pix)/2 is continuous at x =1 then f (1) =

If the function f(x) = (x(e^(sinx) -1))/( 1 - cos x ) is continuous at x =0 then f(0)=

If function f(x) = (sqrt(1+x) - root(3)(1+x))/(x) is continuous function at x = 0, then f(0) is equal to

The value of f(0) such that the function f(x)=(root3(1+2x)-root4(1+x))/(x) is continuous at x = 0, is

The function f(x)=((3^x-1)^2)/(sinx*ln(1+x)), x != 0, is continuous at x=0, Then the value of f(0) is

Prove that the function f(x) =2x^2-3x+2 is continuous at at x=1.

Range of the function f(x)=(1+x^2)/(x^2) is equal to

Find the value of f(1) that the function f(x)= (9(x^(2/3)-2x^(1/3)+1))/((x-1)^(2)), x ne 1 is continuous at x =1

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to