Home
Class 12
MATHS
If f(x) is a continuous function satisfy...

If `f(x)` is a continuous function satisfying `f(x)=f(2-x)`, then the value of the integral `I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx`is equal to

A

`3pi`

B

`6pi`

C

`0`

D

`9pi`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

If x^(f(x))=e^(x-f(x)) , then the value of integral int_(1)^(2)f'(x){(1+logx)^(2)}dx+1 is

If f(x) satisfies f(x)+f(3-x)=3 AA x in R , then the value of integral I=int_((3)/(4))^((9)/(4))f(x)dx is equal to

If f(1 + x) = f(1 - x) (AA x in R) , then the value of the integral I = int_(-7)^(9)(f(x))/(f(x)+f(2-x))dx is

If f(k - x) + f(x) = sin x , then the value of integral I = int_(0)^(k) f(x)dx is equal to

If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, then the value of int_(0)^(pi//2) {f(2x)-f''(2x)}sin x cos x dx is equal to

If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0 , then find the value of int_(0)^(a)(dx)/(1+f(x)) .

The value of the integral overset(2a)underset(0)int (f(x))/(f(x)+f(2a-x))dx is equal to