Home
Class 12
MATHS
The value of lim(xrarr0^(-))(4^((3)/(x))...

The value of `lim_(xrarr0^(-))(4^((3)/(x))+15(2^((1)/(x))))/(2^(1+(6)/(x))+6(2^((1)/(x))))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate the expression: \[ \lim_{x \to 0^-} \frac{4^{\frac{3}{x}} + 15 \cdot 2^{\frac{1}{x}}}{2^{1 + \frac{6}{x}} + 6 \cdot 2^{\frac{1}{x}}} \] ### Step 1: Substitute \( x \) with \( -h \) Since we are taking the limit as \( x \) approaches \( 0 \) from the left, we substitute \( x = -h \) where \( h \to 0^+ \). \[ \lim_{h \to 0^+} \frac{4^{\frac{3}{-h}} + 15 \cdot 2^{\frac{1}{-h}}}{2^{1 + \frac{6}{-h}} + 6 \cdot 2^{\frac{1}{-h}}} \] ### Step 2: Simplify the Exponents Using the property \( a^{-b} = \frac{1}{a^b} \): \[ = \lim_{h \to 0^+} \frac{\frac{1}{4^{\frac{3}{h}}} + 15 \cdot \frac{1}{2^{\frac{1}{h}}}}{2^{1 - \frac{6}{h}} + 6 \cdot \frac{1}{2^{\frac{1}{h}}}} \] ### Step 3: Rewrite the Terms Now, rewrite the terms in the limit: \[ = \lim_{h \to 0^+} \frac{\frac{1}{(2^2)^{\frac{3}{h}}} + 15 \cdot \frac{1}{2^{\frac{1}{h}}}}{2^{1 - \frac{6}{h}} + 6 \cdot \frac{1}{2^{\frac{1}{h}}}} \] This simplifies to: \[ = \lim_{h \to 0^+} \frac{\frac{1}{2^{\frac{6}{h}}} + 15 \cdot \frac{1}{2^{\frac{1}{h}}}}{2^{1 - \frac{6}{h}} + 6 \cdot \frac{1}{2^{\frac{1}{h}}}} \] ### Step 4: Factor Out Dominant Terms As \( h \to 0^+ \), \( 2^{\frac{1}{h}} \) and \( 2^{\frac{6}{h}} \) grow very large. Thus, we factor out the dominant terms: \[ = \lim_{h \to 0^+} \frac{\frac{1}{2^{\frac{6}{h}}}(1 + 15 \cdot 2^{\frac{5}{h}})}{2^{1 - \frac{6}{h}}(1 + 6 \cdot 2^{\frac{5}{h}})} \] ### Step 5: Cancel Out Terms The limit can now be simplified: \[ = \lim_{h \to 0^+} \frac{1 + 15 \cdot 2^{\frac{5}{h}}}{2^{1} \cdot (1 + 6 \cdot 2^{\frac{5}{h}})} \] ### Step 6: Evaluate the Limit As \( h \to 0^+ \), \( 2^{\frac{5}{h}} \to \infty \): \[ = \frac{15 \cdot \infty}{2 \cdot 6 \cdot \infty} = \frac{15}{12} = \frac{5}{4} \] ### Final Answer Thus, the value of the limit is: \[ \lim_{x \to 0^-} \frac{4^{\frac{3}{x}} + 15 \cdot 2^{\frac{1}{x}}}{2^{1 + \frac{6}{x}} + 6 \cdot 2^{\frac{1}{x}}} = 2.5 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0^(-))(4^(2+(3)/(x))+5(2^((1)/(x))))/(2^((1+(6)/(x)))+6(2^((1)/(x)))) is equal to

The value of lim_(xrarr0^(-))(2^(1//x)+2^(3//x))/(3(2^(1//x))+5(2^(3//x)) is

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

The value of lim_(xrarr0)(1-cos^(3)x)/(xsinxcosx)

The value of lim_(xrarr0){tan((pi)/(4)+x)}^(1//x) , is

lim_(xrarr0)((1-cos x)/x^2)

The value of lim_(xrarr0^(+)){x^(x)+x^((x^(x)))} is equal to

lim_(xrarr0) (6^(x)-3^(x)-2^(x)+1)/(x^(2))=?