Home
Class 12
MATHS
The number of values of alpha in [-10pi,...

The number of values of `alpha` in `[-10pi, 10pi]` for which the equations `(sin alpha)x-(cos alpha)y+3z=0, (cos alpha)x+(sin alpha)y-2z=0` and `2x+3y+(cos alpha)z=0` have nontrivial solution is

A

10

B

20

C

40

D

15

Text Solution

AI Generated Solution

The correct Answer is:
To determine the number of values of \( \alpha \) in the interval \([-10\pi, 10\pi]\) for which the given equations have nontrivial solutions, we need to analyze the system of equations: 1. \( (\sin \alpha)x - (\cos \alpha)y + 3z = 0 \) 2. \( (\cos \alpha)x + (\sin \alpha)y - 2z = 0 \) 3. \( 2x + 3y + (\cos \alpha)z = 0 \) ### Step 1: Form the Coefficient Matrix The coefficients of \( x \), \( y \), and \( z \) from the equations can be arranged into a matrix: \[ A = \begin{bmatrix} \sin \alpha & -\cos \alpha & 3 \\ \cos \alpha & \sin \alpha & -2 \\ 2 & 3 & \cos \alpha \end{bmatrix} \] ### Step 2: Set Up the Determinant For the system to have nontrivial solutions, the determinant of this matrix must be zero: \[ \text{det}(A) = 0 \] ### Step 3: Calculate the Determinant We calculate the determinant using the formula for a \( 3 \times 3 \) matrix: \[ \text{det}(A) = \sin \alpha \left( \sin \alpha \cdot \cos \alpha - (-2) \cdot 3 \right) - (-\cos \alpha) \left( \cos \alpha \cdot \cos \alpha - (-2) \cdot 2 \right) + 3 \left( \cos \alpha \cdot 3 - 2 \cdot \sin \alpha \right) \] Calculating each term: 1. \( \sin \alpha (\sin \alpha \cos \alpha + 6) \) 2. \( \cos \alpha (\cos^2 \alpha + 4) \) 3. \( 3(3\cos \alpha - 2\sin \alpha) \) Putting it all together, we get: \[ \text{det}(A) = \sin^2 \alpha \cos \alpha + 6 \sin \alpha - \cos^3 \alpha - 4 \cos \alpha + 9 \cos \alpha - 6 \sin \alpha = 0 \] ### Step 4: Simplify the Expression Combining like terms, we have: \[ \sin^2 \alpha \cos \alpha - \cos^3 \alpha + 5 \cos \alpha = 0 \] Factoring out \( \cos \alpha \): \[ \cos \alpha (\sin^2 \alpha - \cos^2 \alpha + 5) = 0 \] ### Step 5: Solve for \( \alpha \) This gives us two cases to consider: 1. \( \cos \alpha = 0 \) 2. \( \sin^2 \alpha - \cos^2 \alpha + 5 = 0 \) #### Case 1: \( \cos \alpha = 0 \) This occurs at: \[ \alpha = \frac{\pi}{2} + n\pi \quad \text{for } n \in \mathbb{Z} \] In the interval \([-10\pi, 10\pi]\), the values of \( n \) can be calculated: - For \( n = -20 \) to \( n = 20 \), there are \( 20 + 1 = 21 \) values. #### Case 2: \( \sin^2 \alpha - \cos^2 \alpha + 5 = 0 \) This simplifies to: \[ \sin^2 \alpha + 5 = \cos^2 \alpha \] This equation does not yield any real solutions since \( \sin^2 \alpha + 5 \) is always greater than \( \cos^2 \alpha \) for all real \( \alpha \). ### Final Count of Values Thus, the only valid solutions come from \( \cos \alpha = 0 \), yielding 21 solutions. ### Conclusion The total number of values of \( \alpha \) in the interval \([-10\pi, 10\pi]\) for which the equations have nontrivial solutions is: \[ \boxed{21} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let lambda and alpha be real. Then the numbers of intergral values lambda for which the system of linear equations lambdax +(sin alpha) y+ (cos alpha) z=0 x + (cos alpha) y+ (sin alpha) z=0 -x+(sin alpha) y -(cos alpha) z=0 has non-trivial solutions is

The number of values of the parameter alpha in [0, 2pi] for which the quadratic function (sin alpha)x^(2)+(2cosalpha)x+(1)/(2)(cos alpha+sinalpha) is the square of a linear funcion is

Statement I The system of linear equations x+(sin alpha )y+(cos alpha )z=0 x+(cos alpha ) y+(sin alpha )z=0 -x+(sin alpha )y-(cos alpha )z=0 has a not trivial solution for only one value of alpha lying between 0 and pi . Statement II |{:(sin x, cos x , cos x),( cos x , sin x , cos x) , (cos x , cos x , sin x ):}|=0 has no solution in the interval -pi//4 lt x lt pi//4 .

If (2sinalpha)/({1+cos alpha+sin alpha})=y, then ({1-cos alpha+sin alpha})/(1+sin alpha)=

The value of alpha in [0,2pi] which does not satify the equation int_(pi//2)^(alpha) sin x dx = sin 2 alpha, is

(cos ^(3) alpha - cos 3 alpha )/( cos alpha ) + (sin ^(3)alpha + sin 3 alpha )/( sin alpha ) = 3.

The number of value of alpha in the interval [-pi,0] satisfying sin alpha +int_(alpha )^(2alpha) cos 2 x dx =0 , then

If x sin alpha = y cos alpha, prove that : x/(sec 2alpha) + y/(cosec 2 alpha) = x

Find the set of values of alpha in the interval [ pi/2,3pi/2 ], for which the point ( sin alpha, cos alpha )does not exist outside the parabola 2 y^2 + x - 2 = 0

Assertion : The system of linear equations x+(sinalpha)y+(cosalpha)z=0x+(cosalpha)y+(sinalpha)z=0x-(sinalpha)y-(cos\ alpha)z=0 has a non-trivial solution for only value of alpha lying the interval (0,\ pi) Reason: The equation in\ alpha cosalphas in alpha cosalphasinalpha cosalphasinalphac osalpha-sinalpha-cosalpha|=0 has only one solution lying in the interval (-pi/4,\ pi/4)