Home
Class 12
MATHS
Let veca=hati-hatj+hatk, vecb=2hati+hatj...

Let `veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk`, then the value of `[(veca, vecb, vecc)]` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the scalar triple product \([( \vec{a}, \vec{b}, \vec{c} )]\), we will calculate it using the determinant of the matrix formed by the coefficients of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). ### Step 1: Identify the vectors Given: \[ \vec{a} = \hat{i} - \hat{j} + \hat{k} \] \[ \vec{b} = 2\hat{i} + \hat{j} + \hat{k} \] \[ \vec{c} = \hat{i} + \hat{j} - 2\hat{k} \] ### Step 2: Write the coefficients of the vectors The coefficients of the vectors are: - For \(\vec{a}\): \(1, -1, 1\) - For \(\vec{b}\): \(2, 1, 1\) - For \(\vec{c}\): \(1, 1, -2\) ### Step 3: Set up the determinant We can form a determinant using these coefficients: \[ \text{Det} = \begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & -2 \end{vmatrix} \] ### Step 4: Calculate the determinant Using the formula for the determinant of a 3x3 matrix: \[ \text{Det} = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \] we can substitute: - \(a = 1, b = -1, c = 1\) - \(d = 2, e = 1, f = 1\) - \(g = 1, h = 1, i = -2\) Calculating the determinant: \[ = 1 \cdot (1 \cdot (-2) - 1 \cdot 1) - (-1) \cdot (2 \cdot (-2) - 1 \cdot 1) + 1 \cdot (2 \cdot 1 - 1 \cdot 1) \] Calculating each term: 1. \(1 \cdot (-2 - 1) = 1 \cdot (-3) = -3\) 2. \(-(-1) \cdot (-4 - 1) = 1 \cdot (-5) = -5\) 3. \(1 \cdot (2 - 1) = 1 \cdot 1 = 1\) Putting it all together: \[ \text{Det} = -3 - 5 + 1 = -7 \] ### Final Result Thus, the value of the scalar triple product \([( \vec{a}, \vec{b}, \vec{c} )]\) is: \[ \boxed{-7} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=hati+hatj+hatk, vecb=hati-hatj+hatk, vec c=hati+2hatj-hatk , then the value of |(veca*veca,veca*vecb, veca*vecc),(vecb*veca, vecb *vecb,vecb*vecc),(vec c*veca, vec c*vec b,vec c*vec c)| is equal to :

Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk . A vector in the plane of veca and vecb whose projection on vecc is 1/sqrt(3) is (A) 4hati-hatj+4hatk (B) hati+hatj-3hatk (C) 2hati+hatj-2hatk (D) 4hati+hatj-4hatk

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

If veca=hati-2hatj+3hatk, vecb=2hati+3hatj-hatk and vecc=rhati+hatj+(2r-1)hatk are three vectors such that vecc is parallel to the plane of veca and vecb then r is equal to,

If veca=2hati-3hatj+5hatk , vecb=3hati-4hatj+5hatk and vecc=5hati-3hatj-2hatk , then the volume of the parallelopiped with coterminous edges veca+vecb,vecb+vecc,vecc+veca is

If vecA=3hati+hatj+2hatk and vecB=2hati-2hatj+4hatk , then value of |vecA X vecB| will be

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .