Home
Class 12
MATHS
If I=int((lnx)^(5))/(sqrt(x^(2)+x^(2)(ln...

If `I=int((lnx)^(5))/(sqrt(x^(2)+x^(2)(lnx)^(3)))dx=ksqrt((lnx)^(3)+1)((lnx)^(3)-2)+c` (where c is the constant of integration), then 9k is equal to

A

4

B

2

C

6

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{(\ln x)^5}{\sqrt{x^2 + x^2 (\ln x)^3}} \, dx, \] we will follow a series of steps to simplify and evaluate the integral. ### Step 1: Simplify the Integral First, we can factor out \(x^2\) from the square root in the denominator: \[ \sqrt{x^2 + x^2 (\ln x)^3} = \sqrt{x^2(1 + (\ln x)^3)} = x\sqrt{1 + (\ln x)^3}. \] Thus, we can rewrite the integral as: \[ I = \int \frac{(\ln x)^5}{x\sqrt{1 + (\ln x)^3}} \, dx. \] ### Step 2: Substitution Now, we will use the substitution \(t = \ln x\). Then, we have: \[ dx = e^t \, dt \quad \text{and} \quad x = e^t. \] Substituting these into the integral gives: \[ I = \int \frac{t^5}{e^t \sqrt{1 + t^3}} e^t \, dt = \int \frac{t^5}{\sqrt{1 + t^3}} \, dt. \] ### Step 3: Further Substitution Next, we can make another substitution. Let \(u = t^3\), then \(du = 3t^2 \, dt\), or \(dt = \frac{du}{3t^2}\). We also have \(t = u^{1/3}\), so: \[ t^5 = (u^{1/3})^5 = u^{5/3} \quad \text{and} \quad \sqrt{1 + t^3} = \sqrt{1 + u}. \] Substituting these into the integral gives: \[ I = \int \frac{u^{5/3}}{\sqrt{1 + u}} \cdot \frac{du}{3u^{2/3}} = \frac{1}{3} \int \frac{u}{\sqrt{1 + u}} \, du. \] ### Step 4: Integrate Now we can simplify the integral: \[ I = \frac{1}{3} \int u^{1/2} (1 + u)^{-1/2} \, du. \] This integral can be solved using the substitution \(v = 1 + u\), leading to: \[ du = dv \quad \text{and} \quad u = v - 1. \] Thus, we have: \[ I = \frac{1}{3} \int (v - 1)v^{-1/2} \, dv = \frac{1}{3} \left( \int v^{1/2} \, dv - \int v^{-1/2} \, dv \right). \] Calculating these integrals gives: \[ I = \frac{1}{3} \left( \frac{2}{3} v^{3/2} - 2v^{1/2} \right) + C. \] ### Step 5: Back Substitution Now substituting back \(v = 1 + t^3\) and \(t = \ln x\): \[ I = \frac{1}{3} \left( \frac{2}{3} (1 + (\ln x)^3)^{3/2} - 2(1 + (\ln x)^3)^{1/2} \right) + C. \] ### Step 6: Compare with Given Form The problem states that: \[ I = k \sqrt{(\ln x)^3 + 1} \left( (\ln x)^3 - 2 \right) + C. \] By comparing coefficients, we find: \[ k = \frac{2}{9}. \] ### Step 7: Calculate \(9k\) Finally, we calculate: \[ 9k = 9 \cdot \frac{2}{9} = 2. \] Thus, the answer is: \[ \boxed{2}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2)+C , (where, C is the constant of integration), then the value of 9K is equal to

If intf(x)dx=3[f(x)]^(2)+c (where c is the constant of integration) and f(1)=(1)/(6) , then f(6pi) is equal to

If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C , where C is a constant of integration, then g(-1) is equal to

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

If int x^(26).(x-1)^(17).(5x-3)dx=(x^(27).(x-1)^(18))/(k)+C where C is a constant of integration, then the value of k is equal to

If intsqrt(1-cosx)f(x)dx=2/3(1-cosx)^(3//2)+c where c is constant of integration then f(x) equals:

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then