Home
Class 12
MATHS
The limit L=lim(nrarroo)Sigma(r=1)^(n)(n...

The limit `L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2))` satisfies the relation

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of I=lim_(nrarroo)Sigma_(r=1)^(n)(r)/(n^(2)+n+r) is equal to

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

The value of lim_(nrarroo)Sigma_(r=1)^(n)((2r)/(n^(2)))e^((r^(2))/(n^(2))) is equal to

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

Sigma_(r=0)^(n)(n-r)(.^(n)C_(r))^(2) is equal to

The value of lim_(nrarroo)Sigma_(r=1)^(n)(2^(r)+3^(r))/(6^(r)) is equal to

lim_(nrarroo) Sigma_(r=1)^(n) (r)/(1xx3xx5xx7xx9xx...xx(2r+1)) is equal to

lim_(n->oo)1/nsum_(r=1)^(2n)r/(sqrt(n^2+r^2)) equals

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals