Home
Class 12
MATHS
Let lim(xrarr0)(sin2x)/(tan((x)/(k)))=L(...

Let `lim_(xrarr0)(sin2x)/(tan((x)/(k)))=L_(1) and lim_(xrarr0)(e^(2x)-1)/(x)=L_(2),` and the value of `L_(1) L_(2)` is 8, then k is

A

4

B

8

C

6

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the limits \( L_1 \) and \( L_2 \), and then find the value of \( k \) such that \( L_1 \cdot L_2 = 8 \). ### Step 1: Calculate \( L_1 \) We start with the limit: \[ L_1 = \lim_{x \to 0} \frac{\sin(2x)}{\tan\left(\frac{x}{k}\right)} \] Using the identity \( \tan(x) \approx x \) as \( x \to 0 \), we can rewrite \( \tan\left(\frac{x}{k}\right) \): \[ \tan\left(\frac{x}{k}\right) \approx \frac{x}{k} \] Thus, we can rewrite \( L_1 \): \[ L_1 = \lim_{x \to 0} \frac{\sin(2x)}{\frac{x}{k}} = k \cdot \lim_{x \to 0} \frac{\sin(2x)}{x} \] Now, we know that \( \lim_{x \to 0} \frac{\sin(2x)}{2x} = 1 \), so: \[ \lim_{x \to 0} \frac{\sin(2x)}{x} = 2 \cdot \lim_{x \to 0} \frac{\sin(2x)}{2x} = 2 \] Therefore: \[ L_1 = k \cdot 2 \] ### Step 2: Calculate \( L_2 \) Next, we calculate \( L_2 \): \[ L_2 = \lim_{x \to 0} \frac{e^{2x} - 1}{x} \] As \( x \to 0 \), this limit is of the form \( \frac{0}{0} \), so we can apply L'Hôpital's Rule: \[ L_2 = \lim_{x \to 0} \frac{d}{dx}(e^{2x} - 1) \bigg/ \frac{d}{dx}(x) = \lim_{x \to 0} \frac{2e^{2x}}{1} \] Evaluating this limit as \( x \to 0 \): \[ L_2 = 2e^{0} = 2 \] ### Step 3: Find \( k \) Now we have: \[ L_1 = 2k \quad \text{and} \quad L_2 = 2 \] We know from the problem statement that: \[ L_1 \cdot L_2 = 8 \] Substituting the values of \( L_1 \) and \( L_2 \): \[ (2k) \cdot 2 = 8 \] This simplifies to: \[ 4k = 8 \] Dividing both sides by 4 gives: \[ k = 2 \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let lim_(x to 0) ("sin" 2X)/(tan ((x)/(2))) = L, and lim_(x to 0) (e^(2x) - 1)/(x) = L_(2) then the value of L_(1)L_(2) is

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(xrarr0) (sin 3 x)/(2x)

lim_(xrarr0) (tan 4x)/(tan 2x)

lim_(xrarr0) (sin 2x+x)/(x+tan 3x)=?

lim_(xrarr0) (sin^(2)4x)/(x^(2))= ?

lim_(xrarr0) (sin4x)/(1-sqrt(1-x))=?

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

lim_(xrarr0)(cos 2x-1)/(cosx-1)

lim_(xrarr0)((1-cos x)/x^2)