Home
Class 12
MATHS
If tan25^(@)=a, then the value of (tan20...

If `tan25^(@)=a`, then the value of `(tan205^(@)-tan115^(@))/(tan245^(@)+tan335^(@))` in terms of a is

A

`(1-a^(2))/(1+a^(2))`

B

`(1-a)/(2a)`

C

`(2a)/(1+a^(2))`

D

`(1+a^(2))/(1-a^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{\tan 205^\circ - \tan 115^\circ}{\tan 245^\circ + \tan 335^\circ} \] given that \(\tan 25^\circ = a\). ### Step 1: Rewrite the angles using trigonometric identities We can rewrite the angles in terms of \( \tan 25^\circ \): 1. **For \(\tan 205^\circ\)**: \[ \tan 205^\circ = \tan(180^\circ + 25^\circ) = \tan 25^\circ = a \] 2. **For \(\tan 115^\circ\)**: \[ \tan 115^\circ = \tan(90^\circ + 25^\circ) = -\cot 25^\circ = -\frac{1}{\tan 25^\circ} = -\frac{1}{a} \] 3. **For \(\tan 245^\circ\)**: \[ \tan 245^\circ = \tan(270^\circ - 25^\circ) = -\cot 25^\circ = -\frac{1}{a} \] 4. **For \(\tan 335^\circ\)**: \[ \tan 335^\circ = \tan(360^\circ - 25^\circ) = -\tan 25^\circ = -a \] ### Step 2: Substitute these values into the expression Now we substitute these values into the original expression: \[ \frac{\tan 205^\circ - \tan 115^\circ}{\tan 245^\circ + \tan 335^\circ} = \frac{a - \left(-\frac{1}{a}\right)}{-\frac{1}{a} + (-a)} \] This simplifies to: \[ \frac{a + \frac{1}{a}}{-\frac{1}{a} - a} \] ### Step 3: Simplify the numerator and denominator 1. **Numerator**: \[ a + \frac{1}{a} = \frac{a^2 + 1}{a} \] 2. **Denominator**: \[ -\frac{1}{a} - a = -\left(\frac{1 + a^2}{a}\right) \] ### Step 4: Combine the results Now substituting these into the expression gives: \[ \frac{\frac{a^2 + 1}{a}}{-\left(\frac{1 + a^2}{a}\right)} = \frac{a^2 + 1}{-(1 + a^2)} = -1 \] ### Final Result Thus, the value of the expression \(\frac{\tan 205^\circ - \tan 115^\circ}{\tan 245^\circ + \tan 335^\circ}\) in terms of \(a\) is: \[ \frac{1 + a^2}{1 - a^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of : tan30^(@)tan60^(@)

Find the value of : tan30^(@)tan60^(@)

If tan 35^(@) = k , then the value of ( tan 145^(@) - tan 125^(@))/(1+ tan 145^(@) tan 125^(@)) =

The value of tan20^(@)+2 tan50^(@)-tan70^(@), is

Find the value of (tan25^(@))/(cot65^(@)) .

Evaluate (tan60^(@)-tan30^(@))/(1+tan60^(@)tan30^(@)) .

tan 20^(@) tan 40^(@) tan 80^(@) = tan 60^(@)

The value of (1- tan 15^(@))/(1 + tan 15^(@))

Evaluate tan20^(@)tan25^(@)tan65^(@)tan70^(@) .

The value of tan^(-1)tan(-6) is