Home
Class 12
MATHS
The value of sin^(-1)sin17+cos^(-1)cos10...

The value of `sin^(-1)sin17+cos^(-1)cos10` is equal to

A

27

B

`-27`

C

`17-5pi`

D

`9pi-27`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^{-1}(\sin 17) + \cos^{-1}(\cos 10) \), we will follow these steps: ### Step 1: Simplify \( \sin^{-1}(\sin 17) \) The function \( \sin^{-1}(x) \) gives the angle whose sine is \( x \). The range of \( \sin^{-1}(x) \) is \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). Since \( 17 \) is outside this range, we need to find an equivalent angle within the range. To find an equivalent angle, we can use the property: \[ \sin^{-1}(\sin x) = x \quad \text{if } x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \] For \( x = 17 \), we can find an equivalent angle by subtracting \( 2\pi \) or using \( \pi - x \): \[ 17 - 2\pi \approx 17 - 6.2832 \approx 10.7168 \quad (\text{still outside the range}) \] Next, we can use: \[ \sin^{-1}(\sin x) = \pi - x \quad \text{if } x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \] Since \( 17 \) is approximately \( 5.4\pi \), we can find: \[ \sin^{-1}(\sin 17) = \pi - (17 - 2\pi) = 3\pi - 17 \] ### Step 2: Simplify \( \cos^{-1}(\cos 10) \) The function \( \cos^{-1}(x) \) gives the angle whose cosine is \( x \). The range of \( \cos^{-1}(x) \) is \( [0, \pi] \). Since \( 10 \) is outside this range, we can find an equivalent angle using: \[ \cos^{-1}(\cos x) = x \quad \text{if } x \in [0, \pi] \] For \( x = 10 \), we can find an equivalent angle: \[ 10 - 2\pi \approx 10 - 6.2832 \approx 3.7168 \quad (\text{still outside the range}) \] Next, we can use: \[ \cos^{-1}(\cos x) = 2\pi - x \quad \text{if } x \in (0, 2\pi) \] Since \( 10 \) is between \( \pi \) and \( 2\pi \): \[ \cos^{-1}(\cos 10) = 2\pi - 10 \] ### Step 3: Combine the results Now we combine the results from Step 1 and Step 2: \[ \sin^{-1}(\sin 17) + \cos^{-1}(\cos 10) = (3\pi - 17) + (2\pi - 10) \] \[ = 5\pi - 27 \] ### Final Result Thus, the value of \( \sin^{-1}(\sin 17) + \cos^{-1}(\cos 10) \) is: \[ 5\pi - 27 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(-1) (sin 12) + cos^(-1) (cos 12) is equal to

The value of sin^(-1)(sin12)+sin^(-1)(cos12)=

Find the value of sin^(-1) (sin 5) + cos^(-1) (cos 10) + tan^(-1) {tan(-6)} + cot^(-1) {cot(-10)}

Find the value of sin^(-1)(sin5)+cos^(-1)(cos10)+tan^(-1){tan(-6)}+cot^(-1){cot(-10)}

Find the value of sin^(-1)(sin5)+cos^(-1)(cos10)+tan^(-1){tan(-6)}+cot^(-1){cot(-10)}dot

The value of cos^(-1)(-1)+sin^(-1)(1) is

sin(cos^(-1)(3/5)) is equal to

sin^(-1)(cos((5pi)/4)) is equal to

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))