Home
Class 12
MATHS
A straight line L cuts the sides AB, AC,...

A straight line L cuts the sides AB, AC, AD of a parallelogram ABCD at `B_(1), C_(1), d_(1)` respectively. If `vec(AB_(1))=lambda_(1)vec(AB), vec(AD_(1))=lambda_(2)vec(AD) and vec(AC_(1))=lambda_(3)vec(AC),` then `(1)/(lambda_(3))` equal to

A

`(1)/(lambda_(1))+(1)/(lambda_(2))`

B

`(1)/(lambda_(1))-(1)/(lambda_(2))`

C

`-lambda_(1)+lambda_(2)`

D

`lambda_(1)+lambda_(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given information about the parallelogram ABCD and the points where the line L intersects the sides AB, AC, and AD. We are given the following relations: 1. \(\vec{AB_1} = \lambda_1 \vec{AB}\) 2. \(\vec{AD_1} = \lambda_2 \vec{AD}\) 3. \(\vec{AC_1} = \lambda_3 \vec{AC}\) We need to find the value of \(\frac{1}{\lambda_3}\). ### Step 1: Define the vectors Let: - \(\vec{A} = \vec{0}\) (the origin) - \(\vec{B} = \vec{b}\) - \(\vec{C} = \vec{b} + \vec{d}\) - \(\vec{D} = \vec{d}\) From this, we can express the vectors: - \(\vec{AB} = \vec{B} - \vec{A} = \vec{b}\) - \(\vec{AD} = \vec{D} - \vec{A} = \vec{d}\) - \(\vec{AC} = \vec{C} - \vec{A} = \vec{b} + \vec{d}\) ### Step 2: Express the intersection points Using the given relations: - \(\vec{AB_1} = \lambda_1 \vec{b}\) - \(\vec{AD_1} = \lambda_2 \vec{d}\) - \(\vec{AC_1} = \lambda_3 (\vec{b} + \vec{d})\) ### Step 3: Find the vector relations The points \(B_1\), \(C_1\), and \(D_1\) can be expressed as: - \(\vec{B_1} = \lambda_1 \vec{b}\) - \(\vec{C_1} = \lambda_3 (\vec{b} + \vec{d})\) - \(\vec{D_1} = \lambda_2 \vec{d}\) ### Step 4: Establish collinearity Since the points \(B_1\), \(C_1\), and \(D_1\) are collinear, we can set up the relationship: \[ \vec{C_1} - \vec{D_1} = k(\vec{B_1} - \vec{D_1}) \] for some scalar \(k\). Substituting the expressions for \(\vec{C_1}\), \(\vec{D_1}\), and \(\vec{B_1}\): \[ \lambda_3 (\vec{b} + \vec{d}) - \lambda_2 \vec{d} = k(\lambda_1 \vec{b} - \lambda_2 \vec{d}) \] ### Step 5: Rearranging the equation Expanding and rearranging gives: \[ \lambda_3 \vec{b} + (\lambda_3 - \lambda_2) \vec{d} = k(\lambda_1 \vec{b} - \lambda_2 \vec{d}) \] ### Step 6: Equate coefficients From the above equation, we can equate the coefficients of \(\vec{b}\) and \(\vec{d}\): 1. For \(\vec{b}\): \(\lambda_3 = k \lambda_1\) 2. For \(\vec{d}\): \(\lambda_3 - \lambda_2 = -k \lambda_2\) ### Step 7: Solve for \(k\) From the first equation, we have: \[ k = \frac{\lambda_3}{\lambda_1} \] Substituting \(k\) into the second equation: \[ \lambda_3 - \lambda_2 = -\frac{\lambda_3}{\lambda_1} \lambda_2 \] Rearranging gives: \[ \lambda_3 (1 + \frac{\lambda_2}{\lambda_1}) = \lambda_2 \] ### Step 8: Solve for \(\lambda_3\) Thus, we can express \(\lambda_3\) as: \[ \lambda_3 = \frac{\lambda_2}{1 + \frac{\lambda_2}{\lambda_1}} = \frac{\lambda_2 \lambda_1}{\lambda_1 + \lambda_2} \] ### Step 9: Find \(\frac{1}{\lambda_3}\) Finally, we find: \[ \frac{1}{\lambda_3} = \frac{\lambda_1 + \lambda_2}{\lambda_2} \] ### Conclusion Thus, the required value of \(\frac{1}{\lambda_3}\) is: \[ \frac{1}{\lambda_3} = \frac{\lambda_1 + \lambda_2}{\lambda_2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

A straight line L cuts the lines A B ,A Ca n dA D of a parallelogram A B C D at points B_1, C_1a n dD_1, respectively. If ( vec A B)_1,lambda_1 vec A B ,( vec A D)_1=lambda_2 vec A Da n d( vec A C)_1=lambda_3 vec A C , then prove that 1/(lambda_3)=1/(lambda_1)+1/(lambda_2) .

Let B_1,C_1 and D_1 are points on AB,AC and AD of the parallelogram ABCD, such that vec(AB_1)=k_1vec(AC,) vec(AC_1)=k_2vec(AC) and vec(AD_1)=k_2 vec(AD,) where k_1,k_2 and k_3 are scalar.

E and F are the interior points on the sides BC and CD of a parallelogram ABCD. Let vec(BE)=4vec(EC) and vec(CF)=4vec(FD) . If the line EF meets the diagonal AC in G, then vec(AG)=lambda vec(AC) , where lambda is equal to :

In a parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC)

If D,E and F are the mid-points of the sides BC, CA and AB respectively of a triangle ABC and lambda is scalar, such that vec(AD) + 2/3vec(BE)+1/3vec(CF)=lambdavec(AC) , then lambda is equal to

vec(AC) and vec(BD) are the diagonals of a parallelogram ABCD. Prove that (i) vec(AC) + vec(BD) - 2 vec(BC) (ii) vec(AC) - vec(BD) - 2vec(AB)

If [ 2 vec (a) - 3 vec(b) vec( c ) vec(d)] =lambda [vec(a) vec(c ) vec(d) ] + mu [ vec(b) vec( c ) vec( d) ] , then 2 lambda + 3 mu=

Given |vec(A)_(1)|=2,|vec(A)_(2)|=3 and |vec(A)_(1)+vec(A)_(2)|=3 . Find the value of (vec(A)_(1)+2vec(A)_(2)).(3vec(A)_(1)-4vec(A)_(2)) .

Given a parallelogram ABCD . If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| = c , then vec(DB) . vec(AB) has the value

If D and E are the mid-points of sides AB and AC of a triangle A B C respectively, show that vec B E+ vec D C=3/2 vec B Cdot