Home
Class 12
MATHS
If the integral I(n)=int(0)^((pi)/(2))(s...

If the integral `I_(n)=int_(0)^((pi)/(2))(sin(2n-1)x)/(sinx)dx`,. Then the value of `[I_(20)]^(3)-[I_(19)]^(3)`is

A

400

B

200

C

361

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n-1)x)}{\sin x} \, dx \), we will first evaluate \( I_{20} \) and \( I_{19} \) and then find the value of \( I_{20}^3 - I_{19}^3 \). ### Step 1: Evaluate \( I_1 \) For \( n = 1 \): \[ I_1 = \int_0^{\frac{\pi}{2}} \frac{\sin(1 \cdot x)}{\sin x} \, dx = \int_0^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2} \] **Hint:** When \( n = 1 \), the integral simplifies to the integral of 1 over the interval. ### Step 2: Evaluate \( I_2 \) For \( n = 2 \): \[ I_2 = \int_0^{\frac{\pi}{2}} \frac{\sin(3x)}{\sin x} \, dx \] Using the identity \( \sin(3x) = 3\sin x - 4\sin^3 x \): \[ I_2 = \int_0^{\frac{\pi}{2}} \frac{3\sin x - 4\sin^3 x}{\sin x} \, dx = \int_0^{\frac{\pi}{2}} (3 - 4\sin^2 x) \, dx \] This can be split into two integrals: \[ I_2 = \int_0^{\frac{\pi}{2}} 3 \, dx - 4 \int_0^{\frac{\pi}{2}} \sin^2 x \, dx \] Calculating the first integral: \[ \int_0^{\frac{\pi}{2}} 3 \, dx = 3 \cdot \frac{\pi}{2} = \frac{3\pi}{2} \] Now, for the second integral, we know: \[ \int_0^{\frac{\pi}{2}} \sin^2 x \, dx = \frac{\pi}{4} \] Thus, \[ I_2 = \frac{3\pi}{2} - 4 \cdot \frac{\pi}{4} = \frac{3\pi}{2} - \pi = \frac{\pi}{2} \] **Hint:** Use trigonometric identities to simplify the integral. ### Step 3: Generalize \( I_n \) From the calculations of \( I_1 \) and \( I_2 \), we observe: \[ I_1 = I_2 = \frac{\pi}{2} \] We can conjecture that \( I_n = \frac{\pi}{2} \) for all \( n \). ### Step 4: Evaluate \( I_{20} \) and \( I_{19} \) Since we have established that: \[ I_{20} = \frac{\pi}{2} \quad \text{and} \quad I_{19} = \frac{\pi}{2} \] ### Step 5: Calculate \( I_{20}^3 - I_{19}^3 \) Now we can compute: \[ I_{20}^3 - I_{19}^3 = \left(\frac{\pi}{2}\right)^3 - \left(\frac{\pi}{2}\right)^3 = 0 \] ### Final Answer Thus, the value of \( I_{20}^3 - I_{19}^3 \) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the integral I_(n)=int_(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx , then the value of I_(20)-I_(19) is

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

If I_(n)=int_(0)^(pi)x^(n)sinxdx , then find the value of I_(5)+20I_(3) .

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

For a positive integer n, let I _(n) =int _(-pi)^(pi) ((pi)/(2) -|x|) cos nx dx Find the value of [I _(1) + I _(3) +I_(4)] (where [.] denotes greatest integer function) .

The value of the integral I=int_(0)^((pi)/(2))(cosx-sinx)/(10-x^(2)+(pix)/(2))dx is equal to