Home
Class 12
MATHS
The indefinite integral I=int((sin^(2)x-...

The indefinite integral `I=int((sin^(2)x-cos^(2)x)^(2019))/((sinx)^(2021)(cosx)^(2021))dx` simplifies to (where c is an integration constant)

A

`((sin^(2)x-cos^(2)x)^(2020))/(2020)+c`

B

`((tanx-cotx)^(2020))/(2020)+c`

C

`((sinx-cosx)^(2020))/(2020)+c`

D

`((tan^(2)x+cot^(2)x)^(2020))/(2020)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the indefinite integral \[ I = \int \frac{(\sin^2 x - \cos^2 x)^{2019}}{(\sin x)^{2021} (\cos x)^{2021}} \, dx, \] we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ I = \int \frac{(\sin^2 x - \cos^2 x)^{2019}}{(\sin x)^{2021} (\cos x)^{2021}} \, dx. \] ### Step 2: Factor the Numerator Notice that we can factor out \((\sin x)^{2019}\) and \((\cos x)^{2019}\) from the numerator: \[ I = \int \frac{(\sin^2 x - \cos^2 x)}{(\sin x \cos x)^{2021}} \cdot \frac{(\sin x)^{2019} (\cos x)^{2019}}{(\sin x \cos x)^{2019}} \, dx. \] This simplifies to: \[ I = \int \frac{(\sin^2 x - \cos^2 x)}{(\sin x \cos x)^{2021}} \cdot \frac{1}{(\sin^2 x \cos^2 x)} \, dx. \] ### Step 3: Use the Identity Using the identity \(\sin^2 x + \cos^2 x = 1\), we can rewrite the numerator: \[ \sin^2 x - \cos^2 x = -(\cos^2 x - \sin^2 x) = -\cos^2 x + \sin^2 x. \] Thus, we can express the integral as: \[ I = \int \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x} \cdot \frac{1}{(\sin x \cos x)^{2019}} \, dx. \] ### Step 4: Change of Variables Let \(t = \tan x - \cot x\). Then, we differentiate: \[ dt = \left(\sec^2 x + \csc^2 x\right) \, dx. \] This gives us: \[ dx = \frac{dt}{\sec^2 x + \csc^2 x}. \] ### Step 5: Substitute and Integrate Substituting back into the integral, we have: \[ I = \int t^{2019} \cdot \frac{1}{\sec^2 x + \csc^2 x} \, dt. \] The integral simplifies to: \[ I = \int t^{2019} \, dt. \] ### Step 6: Solve the Integral Now we can integrate: \[ I = \frac{t^{2020}}{2020} + C. \] ### Step 7: Substitute Back Substituting back the value of \(t\): \[ I = \frac{(\tan x - \cot x)^{2020}}{2020} + C. \] ### Final Answer Thus, the indefinite integral simplifies to: \[ I = \frac{(\tan x - \cot x)^{2020}}{2020} + C. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the integral int(2-3sinx)/(cos^2x)dx

The integral I=intsin (2theta)[(1+cos^(2)theta)/(2sin^(2)theta)]d theta simplifies to (where, c is the integration constant)

Find the integral int(2x-3cosx+e^x)dx

The integral I=int(sin^(3)thetacos theta)/((1+sin^(2)theta)^(2))d theta simplifies to (where, c is the constant of integration)

Find the indefinite integral int1/(cos(x-a)cos(x-b))dx .

The integral I=int[xe^(x^(2))(sinx^(2)+cosx^(2))]dx =f(x)+c , (where, c is the constant of integration). Then, f(x) can be

The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx is equal to (where, C is the constant of integration)

Integrate: int(sinx*cosx)dx

The indefinite integral inte^(e^(x))((xe^(x).lnx+1)/(x))dx simplifies to (where, c is the constant of integration)

Evaluate the definite integrals int_(0)^(pi//4)(sinx+cosx)/(25-16(sinx-cosx)^(2)) dx