Home
Class 12
MATHS
The arithmetic mean of the numbers 2sin2...

The arithmetic mean of the numbers `2sin2^(@), 4sin4^(@), 6 sin 6^(@), …………. 178 sin 178^(@), 180 sin 180^(@)`

A

`sin1^(@)`

B

`cot1^(@)`

C

`tan1^(@)`

D

`cos 1^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the arithmetic mean of the numbers \(2 \sin(2^\circ), 4 \sin(4^\circ), 6 \sin(6^\circ), \ldots, 178 \sin(178^\circ), 180 \sin(180^\circ)\), we can follow these steps: ### Step 1: Identify the series The series consists of terms of the form \(2n \sin(n^\circ)\) where \(n\) takes values from 1 to 90. Thus, we can express our series as: \[ S = 2 \sin(2^\circ) + 4 \sin(4^\circ) + 6 \sin(6^\circ) + \ldots + 180 \sin(180^\circ) \] ### Step 2: Rewrite the series We can factor out 2 from each term: \[ S = 2 \left( \sin(2^\circ) + 2 \sin(4^\circ) + 3 \sin(6^\circ) + \ldots + 90 \sin(90^\circ) \right) \] ### Step 3: Count the number of terms The series has \(90\) terms since \(n\) ranges from \(1\) to \(90\). ### Step 4: Calculate the sum of the series We can denote the sum of the series inside the parentheses as \(T\): \[ T = \sin(2^\circ) + 2 \sin(4^\circ) + 3 \sin(6^\circ) + \ldots + 90 \sin(90^\circ) \] ### Step 5: Use the sine addition formula To simplify \(T\), we can use the identity for the sum of sines: \[ \sum_{k=1}^{n} k \sin(k \theta) = \frac{n \sin\left(\frac{n \theta}{2}\right) \sin\left(\frac{(n+1) \theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \] In our case, \(\theta = 2^\circ\) and \(n = 90\). ### Step 6: Substitute values into the formula Substituting \(n = 90\) and \(\theta = 2^\circ\): \[ T = \frac{90 \sin(90^\circ) \sin(91^\circ)}{\sin(1^\circ)} \] Since \(\sin(90^\circ) = 1\), we have: \[ T = \frac{90 \sin(91^\circ)}{\sin(1^\circ)} \] ### Step 7: Calculate the arithmetic mean The arithmetic mean \(A\) is given by: \[ A = \frac{S}{n} = \frac{2T}{90} = \frac{2}{90} \cdot \frac{90 \sin(91^\circ)}{\sin(1^\circ)} = \frac{2 \sin(91^\circ)}{\sin(1^\circ)} \] Using the fact that \(\sin(91^\circ) = \sin(89^\circ)\): \[ A = \frac{2 \sin(89^\circ)}{\sin(1^\circ)} \] ### Step 8: Final simplification Since \(\sin(89^\circ) \approx \sin(90^\circ) = 1\): \[ A \approx \frac{2}{\sin(1^\circ)} \] ### Conclusion Thus, the arithmetic mean of the given series is approximately: \[ A \approx 2 \cdot \frac{1}{\sin(1^\circ)} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

sin1 2^(@)sin4 8^(@)sin5 4^(@)=

The arithmetic mean of the numbers 2s in2^0,4sin4^0,6sin^0, ddot, 178s in 178^0,180sin180^0 is sin1^0 b. "tan"1^0 c. cot1^0 d. t a n 89^0

Prove that 2 sin 2^(@)+4sin 4^(@)+6sin 6^(@)+........+180sin 180^(@)=90 cot 1^(@) .

sin ^(2) 24 ^(@) - sin ^(2) 6^(@) = (sqrt5 -1)/(8).

Prove that the average of the numbers n sin n^@ , n = 2,4,6...180 is cot 1^@

The value of sin 78^@ - sin 66^@ - sin 42^@ + sin 6^@ is

The value of sin 78^@ - sin 66^@ - sin 42^@ + sin 6^@ is

The value of (sin 1^(@) +sin 3^(@) + sin 5^(@) +sin 7^(@))/(cos 1^(@)*cos 2^(@)sin 4^(@)) is __________

The average value of sin2^@,sin4^@, sin6^@.........sin180^@ is (i) 1/90 cos1^0 (ii) 1/90 sin1^0 (iii) 1/90cot1^0 (iv) none of these

The value of the determinant Delta=|{:(sin^(2)23^(@)" "sin^(2)67^(@)" "cos180^(@)),(-sin^(2)67^(@)" "-sin^(2)23^(@)" "-cos180^(@)),(cos180^(@)" "sin^(2)23^(@)" "sin^(2)67^(@)):}| is