Home
Class 12
MATHS
Find the value of determinant |[sqrt((13...

Find the value of determinant `|[sqrt((13))+sqrt(3),2sqrt(5),sqrt(5)],[sqrt((15))+sqrt((26)),5,sqrt((10))],[3+sqrt((65)),sqrt((15)),5]|`

A

`15sqrt2-25sqrt3`

B

`25sqrt3-15sqrt2`

C

`3sqrt5`

D

`-15sqrt2+7sqrt3`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of determinant |sqrt((13))+sqrt(3)2sqrt(5)sqrt(5)sqrt((15))+sqrt((26))5sqrt((10))3+sqrt((65))sqrt((15))5|

The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqrt(26),5,sqrt(10)),(3 + sqrt(65), sqrt(15),5):}|

Without expanding, show that the value of each of the following determinants is zero: |(sqrt(23)+sqrt(3),sqrt(5),sqrt(5)),(sqrt(15)+sqrt(46),5,sqrt(10)),(3+sqrt(115),sqrt(15),5)| .

Find the value of the "determinant" |{:(sqrt13+sqrt3,2sqrt5,sqrt5),(sqrt26+sqrt15,5,sqrt10),(sqrt65+3,sqrt15,5):}|

(sqrt(6+2sqrt(5)))(sqrt(6-2sqrt(5)))

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

Find sqrt(2+3sqrt(-5)) + sqrt(2-3sqrt(-5))

2sqrt5 - sqrt5 = sqrt5

Simplify: (2sqrt(3)+sqrt(5))(2sqrt(3)-sqrt(5))

Simplify sqrt(5+2sqrt(6))+sqrt(8-2sqrt(15))