Home
Class 12
MATHS
The value of lim(xrarr0)(log(1+2x))/(5x)...

The value of `lim_(xrarr0)(log(1+2x))/(5x)+lim_(xrarr2)(x^(4)-2^(4))/(x-2)` is equal to

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0)(x^3 log x)

lim_(xrarr2) ((10-x)^(1//3)-2)/(x-2) is equal to

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

lim_(xrarr0) (1+x+x^2-e^x)/(x^2) is equal to

lim_(xrarr0)(x^(2)cosx)/(1-cosx) is equal to

The value of lim_(xrarr1)(log_2 2x)^(log_x5) , is

lim_(xrarr0) (x^(2)-3x+2)

lim_(xrarr0)((1+x)^(n)-1)/(x) is equal to

lim_(xrarr2) (x^(3)-8)/(x^(2)-4)

lim_(xrarr0)(sin(x)/(4))/(x)