Home
Class 12
MATHS
Let f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(...

Let `f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(x+1)^(2))dx`. If `6g(2)+1=0` then `g(-(1)/(2))` is equal to

A

4

B

`-4`

C

3

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: 1. **Define the functions**: We are given \( f(x) = 2x + 1 \) and \( g(x) = \int \frac{f(x)}{x^2 (x+1)^2} \, dx \). 2. **Rewrite the integral**: Substitute \( f(x) \) into the integral: \[ g(x) = \int \frac{2x + 1}{x^2 (x+1)^2} \, dx \] 3. **Simplify the integrand**: We can separate the integrand: \[ g(x) = \int \left( \frac{2x}{x^2 (x+1)^2} + \frac{1}{x^2 (x+1)^2} \right) \, dx \] 4. **Break down the fractions**: We can simplify \( \frac{2x}{x^2 (x+1)^2} \) and \( \frac{1}{x^2 (x+1)^2} \): \[ \frac{2x}{x^2 (x+1)^2} = \frac{2}{x(x+1)^2} \] \[ \frac{1}{x^2 (x+1)^2} = \frac{1}{x^2} - \frac{1}{(x+1)^2} \] 5. **Combine the fractions**: Thus, we can write: \[ g(x) = \int \left( \frac{2}{x(x+1)^2} + \frac{1}{x^2} - \frac{1}{(x+1)^2} \right) \, dx \] 6. **Integrate each term**: - The integral of \( \frac{2}{x(x+1)^2} \) can be solved using partial fractions. - The integral of \( \frac{1}{x^2} \) is \( -\frac{1}{x} \). - The integral of \( \frac{1}{(x+1)^2} \) is \( -\frac{1}{x+1} \). 7. **Combine the results**: \[ g(x) = -\frac{1}{x} + \frac{1}{x+1} + C \] 8. **Use the condition**: We have the condition \( 6g(2) + 1 = 0 \): \[ g(2) = -\frac{1}{2} + \frac{1}{3} + C \] \[ g(2) = -\frac{3}{6} + \frac{2}{6} + C = -\frac{1}{6} + C \] Setting \( 6(-\frac{1}{6} + C) + 1 = 0 \): \[ -1 + 6C + 1 = 0 \implies 6C = 0 \implies C = 0 \] 9. **Final form of \( g(x) \)**: \[ g(x) = -\frac{1}{x} + \frac{1}{x+1} \] 10. **Calculate \( g\left(-\frac{1}{2}\right) \)**: \[ g\left(-\frac{1}{2}\right) = -\frac{1}{-\frac{1}{2}} + \frac{1}{-\frac{1}{2} + 1} = 2 + \frac{1}{\frac{1}{2}} = 2 + 2 = 4 \] Thus, the value of \( g\left(-\frac{1}{2}\right) \) is \( 4 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=[x] and g(x)=|x| . Find (f+2g)(-1)

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(2)=a then g'(2) is equal to

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If f(2)=a then g'(2) is equal to

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

Let f :R to [(3)/(4), oo) be a surjective quadratic function with line of symmetry 2x -1=0 and f (1) =1 If g (x)=(f(x)+f(-x))/(2 ) then int (dx)/(sqrt(g (e ^(x))-2)) is equal to:

If f(x)=sqrt(2x+3) and g(x)=x^(2)+1 , then f(g(2))=

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

Let f(x) = (e^(x) - e^(-x))/(2) and if g(f(x)) = x , then g((e^(1002) -1)/(2e^(501))) equals ...........

Let f and g be two differentiable functins such that: f (x)=g '(1) sin x+ (g'' (2) -1) x g (x) = x^(2) -f'((pi)/(2)) x+ f'(-(pi)/(2)) If phi (x) =f ^(-1) (x) then phi'((pi)/(2) +1) equals to :

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to