Home
Class 12
MATHS
The value of lim(xrarr0^(+)){x^(x)+x^((x...

The value of `lim_(xrarr0^(+)){x^(x)+x^((x^(x)))}` is equal to

A

0

B

1

C

2

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0^+} \left( x^x + x^{(x^x)} \right) \), we can break it down into two parts: \( x^x \) and \( x^{(x^x)} \). ### Step 1: Evaluate \( x^x \) We start with the first part, \( x^x \). We can rewrite it using the exponential function: \[ x^x = e^{x \ln x} \] As \( x \to 0^+ \), we need to evaluate \( x \ln x \). ### Step 2: Analyze \( x \ln x \) We know that \( \ln x \to -\infty \) as \( x \to 0^+ \). Therefore, we analyze the product \( x \ln x \): \[ \lim_{x \to 0^+} x \ln x \] This is an indeterminate form \( 0 \cdot (-\infty) \). We can rewrite it as: \[ \lim_{x \to 0^+} \frac{\ln x}{1/x} \] ### Step 3: Apply L'Hôpital's Rule This limit is now in the form \( \frac{-\infty}{\infty} \), so we apply L'Hôpital's Rule: \[ \lim_{x \to 0^+} \frac{\ln x}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} -x = 0 \] Thus, we find: \[ \lim_{x \to 0^+} x \ln x = 0 \] ### Step 4: Find \( x^x \) Now substituting back, we have: \[ \lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{x \ln x} = e^0 = 1 \] ### Step 5: Evaluate \( x^{(x^x)} \) Next, we consider the second part, \( x^{(x^x)} \). Since we found that \( x^x \to 1 \) as \( x \to 0^+ \), we can rewrite it as: \[ x^{(x^x)} = x^1 = x \] ### Step 6: Find the limit of \( x^{(x^x)} \) Now we evaluate: \[ \lim_{x \to 0^+} x^{(x^x)} = \lim_{x \to 0^+} x = 0 \] ### Step 7: Combine the results Now we combine the results from both parts: \[ \lim_{x \to 0^+} \left( x^x + x^{(x^x)} \right) = \lim_{x \to 0^+} x^x + \lim_{x \to 0^+} x^{(x^x)} = 1 + 0 = 1 \] ### Final Answer Thus, the value of the limit is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(cos x+sinx)^((1)/(x)) is equal to to (take e = 2.71)

The value of lim_(xrarr0)(cos x+sin bx)^((a)/(x)) is equal to

The value of lim_(xrarr0) (|x|)/(x) , is

Value of limit lim_(xrarr0^(+))x^(x^(x)).ln(x) is

The value of lim_(xrarr0) (a^x-b^x)/(x) ,is

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

Evaluate: lim_(xrarr0)x^x

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to