Home
Class 12
MATHS
Consider three vectors vecp=hati+hatj+ha...

Consider three vectors `vecp=hati+hatj+hatk, vecq=3hati-hatj+hatk and vecr=alpha hati+betahatj+lambdahatk, AA alpha, beta, lambda in R`. If `[(vecp,vecq,vecr)]` is maximum and `[vecr]=2sqrt6`, then the value of `alpha-beta-lambda` is equal to

A

8

B

4

C

0

D

`-4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha - \beta - \lambda \) given the vectors \( \vec{p} = \hat{i} + \hat{j} + \hat{k} \), \( \vec{q} = 3\hat{i} - \hat{j} + \hat{k} \), and \( \vec{r} = \alpha \hat{i} + \beta \hat{j} + \lambda \hat{k} \). We are also given that the scalar triple product \( [\vec{p}, \vec{q}, \vec{r}] \) is maximum and \( |\vec{r}| = 2\sqrt{6} \). ### Step 1: Calculate the cross product \( \vec{p} \times \vec{q} \) The scalar triple product can be expressed as: \[ [\vec{p}, \vec{q}, \vec{r}] = \vec{p} \cdot (\vec{q} \times \vec{r}) \] To maximize this, we need \( \vec{r} \) to be in the direction of \( \vec{p} \times \vec{q} \). First, we compute \( \vec{p} \times \vec{q} \): \[ \vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 3 & -1 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 3 & -1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} = 1 \cdot 1 - (-1) \cdot 1 = 1 + 1 = 2 \) 2. \( \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} = 1 \cdot 1 - 3 \cdot 1 = 1 - 3 = -2 \) 3. \( \begin{vmatrix} 1 & 1 \\ 3 & -1 \end{vmatrix} = 1 \cdot (-1) - 3 \cdot 1 = -1 - 3 = -4 \) Putting it all together: \[ \vec{p} \times \vec{q} = 2\hat{i} + 2\hat{j} - 4\hat{k} \] ### Step 2: Find the magnitude of \( \vec{p} \times \vec{q} \) Now we calculate the magnitude of \( \vec{p} \times \vec{q} \): \[ |\vec{p} \times \vec{q}| = \sqrt{2^2 + 2^2 + (-4)^2} = \sqrt{4 + 4 + 16} = \sqrt{24} = 2\sqrt{6} \] ### Step 3: Express \( \vec{r} \) Since \( \vec{r} \) must be in the direction of \( \vec{p} \times \vec{q} \), we can express \( \vec{r} \) as: \[ \vec{r} = k \cdot \left( \vec{p} \times \vec{q} \right) = k(2\hat{i} + 2\hat{j} - 4\hat{k}) \] Given that \( |\vec{r}| = 2\sqrt{6} \), we find \( k \): \[ |\vec{r}| = |k| \cdot |\vec{p} \times \vec{q}| = |k| \cdot 2\sqrt{6} \] Setting this equal to \( 2\sqrt{6} \): \[ |k| \cdot 2\sqrt{6} = 2\sqrt{6} \implies |k| = 1 \] Thus, \( k = 1 \) or \( k = -1 \). We can choose \( k = 1 \) for simplicity: \[ \vec{r} = 2\hat{i} + 2\hat{j} - 4\hat{k} \] ### Step 4: Compare coefficients to find \( \alpha, \beta, \lambda \) From \( \vec{r} = \alpha \hat{i} + \beta \hat{j} + \lambda \hat{k} \): - \( \alpha = 2 \) - \( \beta = 2 \) - \( \lambda = -4 \) ### Step 5: Calculate \( \alpha - \beta - \lambda \) Now we compute: \[ \alpha - \beta - \lambda = 2 - 2 - (-4) = 2 - 2 + 4 = 4 \] ### Final Answer Thus, the value of \( \alpha - \beta - \lambda \) is: \[ \boxed{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider three vectors vecp=hati+hatj+hatk,vecq=2hati+4hatj-hatk and vecr=hati+hatj+3hatk and let vecs be a unit vector, then vecp,vecq and vecr are

What is the value of linear veloctity, if vecomega =hati-hatj+hatk and vecr=hati+2hatj+3hatk

If vector vec a = hati + hatj + hatk , vecb = 4 hati + 3 hatj + 4 hatk and vec c = hati + alpha hatj + beta hatk are linearly dependent and | vec c | = sqrt3 , then value of | alpha | + | beta | is

Consider the equation E_(1):vecr xx (2hati-hatj+3hatk)=3hati+hatk and E_(2): vecr xx (hati+2hatj-3hatk)=2hati-hatj , then

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

vecr=3hati+2hatj-5hatk, veca=2hati-hatj+hatk, vecb=hati+3hatj-2hatk, vecc=-2hati+hatj-3hatk such that vecr=lambdaveca+muvecb+gammavecc , then

If the planes vecr.(2hati-hatj+2hatk)=4 and vecr.(3hati+2hatj+lamda hatk)=3 are perpendicular then lamda=

Find the line of intersection of the planes vecr.(3hati-hatj+hatk)=1 and vecr.(hati+4hatj-2hatk)=2

Find the shortest distance vecr=hati+2hatj+3hatk+lambda(hati-3hatj+2hatk)and vecr= 4hati+5hatj+6hatk+mu(2hati+3hatj+hatk) .

Consider three vectors A=hati +hatj-2hatk , B=hati +hatj+2hatk and 2hati -3hatj +4hatk A vector X of the from alphaA +betaB (alpha and beta"are numbers") is perpendicular to C .The ratio of alpha and beta is