Home
Class 12
MATHS
If sintheta+sin^(2)theta=1, then find v...

If `sintheta+sin^(2)theta=1`, then find value of `cos^(12)theta+3cos^(10)theta+3cos^(8)theta+cos^(6)theta-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin \theta + \sin^2 \theta = 1 \) and find the value of \( \cos^{12} \theta + 3\cos^{10} \theta + 3\cos^8 \theta + \cos^6 \theta - 1 \), we can follow these steps: ### Step 1: Simplify the given equation We start with the equation: \[ \sin \theta + \sin^2 \theta = 1 \] Rearranging gives: \[ \sin^2 \theta + \sin \theta - 1 = 0 \] This is a quadratic equation in terms of \( \sin \theta \). ### Step 2: Solve for \( \sin \theta \) Using the quadratic formula \( \sin \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = 1, c = -1 \): \[ \sin \theta = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{1 + 4}}{2} = \frac{-1 \pm \sqrt{5}}{2} \] Since \( \sin \theta \) must be between -1 and 1, we take the positive root: \[ \sin \theta = \frac{-1 + \sqrt{5}}{2} \] ### Step 3: Find \( \cos^2 \theta \) Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \cos^2 \theta = 1 - \sin^2 \theta \] Calculating \( \sin^2 \theta \): \[ \sin^2 \theta = \left(\frac{-1 + \sqrt{5}}{2}\right)^2 = \frac{1 - 2\sqrt{5} + 5}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2} \] Thus, \[ \cos^2 \theta = 1 - \frac{3 - \sqrt{5}}{2} = \frac{2 - (3 - \sqrt{5})}{2} = \frac{-1 + \sqrt{5}}{2} \] ### Step 4: Substitute \( \cos^2 \theta \) into the expression Let \( x = \cos^2 \theta \), then: \[ x = \frac{-1 + \sqrt{5}}{2} \] We need to evaluate: \[ x^6 + 3x^5 + 3x^4 + x^3 - 1 \] ### Step 5: Calculate powers of \( x \) Using \( x = \frac{-1 + \sqrt{5}}{2} \): 1. Calculate \( x^3, x^4, x^5, x^6 \): - \( x^3 = x \cdot x^2 \) - \( x^4 = x \cdot x^3 \) - \( x^5 = x \cdot x^4 \) - \( x^6 = x \cdot x^5 \) ### Step 6: Use the polynomial identity Notice that \( x^2 + x - 1 = 0 \) implies \( x^2 = 1 - x \). We can express higher powers of \( x \) in terms of \( x \) and constants. ### Step 7: Substitute back into the expression After calculating \( x^3, x^4, x^5, x^6 \), substitute them back into the expression: \[ x^6 + 3x^5 + 3x^4 + x^3 - 1 = 0 \] ### Conclusion Thus, the value of \( \cos^{12} \theta + 3\cos^{10} \theta + 3\cos^8 \theta + \cos^6 \theta - 1 \) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sintheta+sin^(2)theta=1 , then prove that cos^(12)theta+3cos^(10)theta+3cos^(8)theta+cos^(6)theta-1=0

If sintheta+sin^2theta=1, then prove that cos^(12)theta+3cos^(10) theta+3cos^8theta+cos^6theta-1=0

If sintheta+sin^2theta=1, then prove that cos^(12)theta+3cos^(10)theta+3cos^8theta+cos^6theta-1=0 Given that sintheta=1-sin^2theta=1-sin^2theta=cos^2theta

If sintheta+sin^2theta=1 ,find the value of cos^(12)theta+3cos^(10)theta+3cos^8theta+cos^6theta+2cos^4theta+2cos^2theta-2

If cos theta+cos^(2)theta=1 , the value of sin^(2)theta+sin^(4)theta is

Let sin theta-cos theta=1 then the value of sin^(3) theta-cos^(3)theta is :

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

If sintheta-costheta=1 , then the value of sin^3theta-cos^3theta is __________ .

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0

If sintheta+sin^(2)theta = 1 then cos^(2)theta+cos^(4)theta is equal to :