Home
Class 12
MATHS
For a complex number z, if arg(z) in (-p...

For a complex number z, if `arg(z) in (-pi, pi], ` then `arg(1+cos.(6pi)/(5)+I sin.(6pi)/(5))` is (here `i^(2)-1`)

A

`(3pi)/(5)`

B

`(2pi)/(5)`

C

`-(2pi)/(5)`

D

`-(3pi)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the argument of the complex number \( z = 1 + \cos\left(\frac{6\pi}{5}\right) + i \sin\left(\frac{6\pi}{5}\right) \), we will follow these steps: ### Step 1: Rewrite the complex number The complex number can be rewritten as: \[ z = 1 + \cos\left(\frac{6\pi}{5}\right) + i \sin\left(\frac{6\pi}{5}\right) \] ### Step 2: Use trigonometric identities Using the trigonometric identity \( 1 + \cos \theta = 2 \cos^2\left(\frac{\theta}{2}\right) \), we can express \( 1 + \cos\left(\frac{6\pi}{5}\right) \) as: \[ 1 + \cos\left(\frac{6\pi}{5}\right) = 2 \cos^2\left(\frac{6\pi}{10}\right) = 2 \cos^2\left(\frac{3\pi}{5}\right) \] ### Step 3: Express \( \sin\left(\frac{6\pi}{5}\right) \) Using the identity for sine, we can express \( \sin\left(\frac{6\pi}{5}\right) \) as: \[ \sin\left(\frac{6\pi}{5}\right) = \sin\left(\frac{6\pi}{5}\right) = 2 \sin\left(\frac{3\pi}{5}\right) \cos\left(\frac{3\pi}{5}\right) \] ### Step 4: Substitute back into the complex number Now substituting these back into the expression for \( z \): \[ z = 2 \cos^2\left(\frac{3\pi}{5}\right) + i \cdot 2 \sin\left(\frac{3\pi}{5}\right) \cos\left(\frac{3\pi}{5}\right) \] ### Step 5: Factor out the common terms Factoring out \( 2 \cos\left(\frac{3\pi}{5}\right) \): \[ z = 2 \cos\left(\frac{3\pi}{5}\right) \left( \cos\left(\frac{3\pi}{5}\right) + i \sin\left(\frac{3\pi}{5}\right) \right) \] ### Step 6: Identify the polar form The expression \( \cos\left(\frac{3\pi}{5}\right) + i \sin\left(\frac{3\pi}{5}\right) \) can be recognized as the polar form \( e^{i\theta} \), where \( \theta = \frac{3\pi}{5} \). ### Step 7: Determine the argument Thus, the argument of the complex number \( z \) is: \[ \arg(z) = \frac{3\pi}{5} \] ### Final Answer The argument of \( z \) is \( \frac{3\pi}{5} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

For a complex number Z. If arg(Z) in (-pi, pi] , then arg{1+cos.(6pi)/(7)+isin.(6pi)/(7)} is (here i^(2)=-1 )

If z ne 0 be a complex number and "arg"(z)=pi//4 , then

The amplitude of sin (pi)/(5) +i(1-cos"" (pi)/(5)) is

For a complex number Z, if arg Z=(pi)/(4) and |Z+(1)/(Z)|=4 , then the value of ||Z|-(1)/(|Z|)| is equal to

Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos" (6pi)/(5))

The principal value of arg (z) , where z=1+cos((8pi)/5)+i sin((8pi)/5) (where, i=sqrt-1) is given by

If arg z = pi/4 ,then

Statement-1 : let z_(1) and z_(2) be two complex numbers such that arg (z_(1)) = pi/3 and arg(z_(2)) = pi/6 " then arg " (z_(1) z_(2)) = pi/2 and Statement -2 : arg(z_(1)z_(2)) = arg(z_(1)) + arg(z_(2)) + 2kpi, k in { 0,1,-1}

Complex number z lies on the curve S-= arg(z+3)/(z+3i) =-(pi)/(4)

Let z_1=6+i and z_2=4-3i . If z is a complex number such thar arg ((z-z_1)/(z_2-z))= pi/2 then (A) |z-(5-i)=sqrt(5) (B) |z-(5+i)=sqrt(5) (C) |z-(5-i)|=5 (D) |z-(5+i)|=5