Home
Class 12
MATHS
Let alpha, beta and gamma be the roots o...

Let `alpha, beta and gamma` be the roots of equation `x^(3)+x+1=0`, then `(alpha beta(alpha+beta)+betagamma(beta+gamma)+gamma alpha(gamma+alpha))/(alpha^(2)+beta^(2)+gamma^(2))` is equal to

A

`(3)/(2)`

B

1

C

`-3`

D

`-(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{\alpha \beta (\alpha + \beta) + \beta \gamma (\beta + \gamma) + \gamma \alpha (\gamma + \alpha)}{\alpha^2 + \beta^2 + \gamma^2} \] where \(\alpha, \beta, \gamma\) are the roots of the polynomial \(x^3 + x + 1 = 0\). ### Step 1: Identify the coefficients of the polynomial The polynomial can be compared with the standard form \(ax^3 + bx^2 + cx + d = 0\): - Here, \(a = 1\), \(b = 0\), \(c = 1\), and \(d = 1\). ### Step 2: Use Vieta's formulas From Vieta's formulas, we know: - \(\alpha + \beta + \gamma = -\frac{b}{a} = 0\) - \(\alpha \beta + \beta \gamma + \gamma \alpha = \frac{c}{a} = 1\) - \(\alpha \beta \gamma = -\frac{d}{a} = -1\) ### Step 3: Simplify the numerator We can express \(\alpha + \beta\), \(\beta + \gamma\), and \(\gamma + \alpha\) in terms of the roots: - \(\alpha + \beta = -\gamma\) - \(\beta + \gamma = -\alpha\) - \(\gamma + \alpha = -\beta\) Substituting these into the numerator: \[ \alpha \beta (\alpha + \beta) = \alpha \beta (-\gamma) = -\alpha \beta \gamma \] \[ \beta \gamma (\beta + \gamma) = \beta \gamma (-\alpha) = -\beta \gamma \alpha \] \[ \gamma \alpha (\gamma + \alpha) = \gamma \alpha (-\beta) = -\gamma \alpha \beta \] Thus, the numerator becomes: \[ -\alpha \beta \gamma - \beta \gamma \alpha - \gamma \alpha \beta = -3\alpha \beta \gamma \] Since \(\alpha \beta \gamma = -1\): \[ \text{Numerator} = -3(-1) = 3 \] ### Step 4: Simplify the denominator To find \(\alpha^2 + \beta^2 + \gamma^2\), we can use the identity: \[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha \beta + \beta \gamma + \gamma \alpha) \] Substituting the known values: \[ \alpha^2 + \beta^2 + \gamma^2 = 0^2 - 2(1) = -2 \] ### Step 5: Combine the results Now we can substitute the numerator and denominator into the original expression: \[ \frac{3}{-2} = -\frac{3}{2} \] ### Final Answer Thus, the value of the expression is: \[ \boxed{-\frac{3}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then (alpha + beta) (beta + gamma)(gamma + alpha) =

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of (alphabeta)/(gamma)+(betagamma)/(alpha)+(gammaalpha)/(beta) is equal to

if alpha, beta, gamma are the roots of equation x^3-x-1=0 , then (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is equal to

If alpha,beta,gamma are the roots of the equation x^3 + 4x +1=0 then (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)=

If alpha , beta , gamma are the roots of the equation x^3 +px^2 + qx +r=0 prove that ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =r-pq

If alpha, beta and gamma are the roots of the equation x^(3)+x+2=0 , then the equation whose roots are (alpha- beta)(alpha-gamma), (beta-gamma)(beta-gamma) and (gamma-alpha)(gamma-alpha) is

If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the value of |{:(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta):}| is

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is: