Home
Class 12
MATHS
Let veca=hati+hatj-hatk and vecb=2hati-h...

Let `veca=hati+hatj-hatk` and `vecb=2hati-hatj+hatk`. If `vecc` is a non - zero vector perpendicular to both `veca and vecb`, such that its component along x, y, z axes are rational numbers, then `|vecc|` is

A

an integer

B

an irrational number

C

a rational number

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the vector \(\vec{c}\) that is perpendicular to both \(\vec{a}\) and \(\vec{b}\), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} + \hat{j} - \hat{k} \] \[ \vec{b} = 2\hat{i} - \hat{j} + \hat{k} \] ### Step 2: Calculate the cross product \(\vec{c} = \vec{a} \times \vec{b}\) To find a vector \(\vec{c}\) that is perpendicular to both \(\vec{a}\) and \(\vec{b}\), we compute the cross product \(\vec{a} \times \vec{b}\). The cross product is given by the determinant: \[ \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -1 \\ 2 & -1 & 1 \end{vmatrix} \] ### Step 3: Calculate the determinant Expanding the determinant: \[ \vec{c} = \hat{i} \begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix} = 1 \cdot 1 - (-1) \cdot (-1) = 1 - 1 = 0\) 2. \(\begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} = 1 \cdot 1 - (-1) \cdot 2 = 1 + 2 = 3\) 3. \(\begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} = 1 \cdot (-1) - 1 \cdot 2 = -1 - 2 = -3\) Putting it all together: \[ \vec{c} = \hat{i}(0) - \hat{j}(3) + \hat{k}(-3) = -3\hat{j} - 3\hat{k} \] Thus, \[ \vec{c} = 0\hat{i} - 3\hat{j} - 3\hat{k} \] ### Step 4: Find the magnitude of \(\vec{c}\) The magnitude of \(\vec{c}\) is given by: \[ |\vec{c}| = \sqrt{(0)^2 + (-3)^2 + (-3)^2} = \sqrt{0 + 9 + 9} = \sqrt{18} = 3\sqrt{2} \] ### Final Answer \[ |\vec{c}| = 3\sqrt{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector perpendicular to veca and coplanar with veca and vecb , then it is given by

If veca=2hati-hatj+hatk and vecb=3hati+4hatj-hatk , prove that vecaxxvecb represents a vector which perpendicular to both veca and vecb .

If veca=hati+2hatj-3hatk and vecb=3hati+hatj+2hatk show that the vectors veca+vecb and veca-vecb are perpendicular to other.

Let veca=hati+4hatj+2hatk,vecb=3hati-2hatj+7hatk and vecc=2hati-2hatj+4hatk . Find a vector vecd which perpendicular to both veca and vecb and vecc.vecd=15 .

If veca=4hatj+5hatj-hatk,vecb=hati-4hatj+4hatk and vecc = 3hati+hatj+hatk Find a vector vecd which is perpendicualr to both veca and vecb and vecd.vecc = 21 .

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3c .

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

Let veca=hati+2hatj+3hati, vecb=hati-hatj+2hatk and vecc=(x-2)hati-(x-3)hatj-hatk . If vecc lies in the plane of veca and vecb , then (1)/(x) is equal to

Let veca=hati-hatj, vecb=hati-hatk and vecc=7hati-hatk. Find a vector hatd which is perpendicular to vectors veca and vecb and satisfies the condition vecc.vecd =1.

Let veca=hati-2hatj+hatkand vecb=hati-hatj+hatk be two vectors. If vecc is a vector such that vecbxxvecc=vecbxxveca and vecc*veca=0, theat vecc*vecb is equal to: