Home
Class 12
MATHS
Let the matrix A=[(1,1),(2,2)] and B=A+A...

Let the matrix `A=[(1,1),(2,2)]` and `B=A+A^(2)+A^(3)+A^(4)`. If `B=lambdaA, AA lambda in R`, then the vlaue of `lambda` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the powers of the matrix \( A \) and then find the matrix \( B \) as defined in the question. Finally, we will compare \( B \) with \( \lambda A \) to find the value of \( \lambda \). ### Step 1: Define the matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \] ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 1 \cdot 2 = 1 + 2 = 3 \) - First row, second column: \( 1 \cdot 1 + 1 \cdot 2 = 1 + 2 = 3 \) - Second row, first column: \( 2 \cdot 1 + 2 \cdot 2 = 2 + 4 = 6 \) - Second row, second column: \( 2 \cdot 1 + 2 \cdot 2 = 2 + 4 = 6 \) Thus, \[ A^2 = \begin{pmatrix} 3 & 3 \\ 6 & 6 \end{pmatrix} = 3A \] ### Step 3: Calculate \( A^3 \) To find \( A^3 \), we multiply \( A^2 \) by \( A \): \[ A^3 = A^2 \cdot A = (3A) \cdot A = 3A^2 \] Since \( A^2 = 3A \), we have: \[ A^3 = 3(3A) = 9A \] ### Step 4: Calculate \( A^4 \) To find \( A^4 \), we multiply \( A^3 \) by \( A \): \[ A^4 = A^3 \cdot A = (9A) \cdot A = 9A^2 \] Using \( A^2 = 3A \), we get: \[ A^4 = 9(3A) = 27A \] ### Step 5: Calculate \( B \) Now we can calculate \( B \): \[ B = A + A^2 + A^3 + A^4 \] Substituting the values we found: \[ B = A + 3A + 9A + 27A = (1 + 3 + 9 + 27)A = 40A \] ### Step 6: Compare with \( \lambda A \) We are given that \( B = \lambda A \). From our calculation: \[ B = 40A \] Thus, we can equate: \[ \lambda A = 40A \] This implies: \[ \lambda = 40 \] ### Final Answer The value of \( \lambda \) is \( \boxed{40} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[(1, 1),(3,3)] and B=A+A^(2)+A^(3)+A^(4) . If B=lambdaA, AA lambda in R , then the value of lambda is equal to

if A=[(1,2),(2,3)] and A^(2) -lambdaA-l_(2)=O, then lambda is equal to

If f(x)+2f(1-x)=6x(AA x in R) , then the vlaue of (3)/(4)((f(8))/(f'(1))) is equal to

If sin2A=lambdasin2B , then write the value of (lambda+1)/(lambda-1) .

If A=[(1,-2,1),(2,lambda,-2),(1,3,-3)] be the adjoint matrix of matrix B such that |B|=9 , then the value of lambda is equal to

If A=[[1, 1], [1, 1]] satisfies A^4=lambdaA , then write the value of lambda

A matrix A = ({:(2,3),(5,-2):}) is such that A^(-1)= lambda A then what is the value of lambda .

Let matrix A=[(x,3,2),(1,y,4),(2, 2,z)], " if " xyz=2lambda and 8x+4y+3x=lambda+28 , then (adj A) A equals :

If z=x+i y, z^(1/3)=a-i b " and " x/a-y/b=lambda(a^2-b^2), then lambda is equal to

Let alpha and beta be the values of x obtained form the equation lambda^(2) (x^(2)-x) + 2lambdax +3 =0 and if lambda_(1),lambda_(2) be the two values of lambda for which alpha and beta are connected by the relation alpha/beta + beta/alpha = 4/3 . then find the value of (lambda_(1)^(2))/(lambda_(2)) + (lambda_(2)^(2))/(lambda_(1)) and (lambda_(1)^(2))/lambda_(2)^(2) + (lambda_(2)^(2))/(lambda_(1)^(2))