Home
Class 12
MATHS
The value of the integral int(0)^(8)(x^(...

The value of the integral `int_(0)^(8)(x^(2))/(x^(2)+8x+32) dx` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{8} \frac{x^2}{x^2 + 8x + 32} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integrand: \[ I = \int_{0}^{8} \frac{x^2}{x^2 + 8x + 32} \, dx \] We can add and subtract \( 8x + 32 \) in the numerator: \[ I = \int_{0}^{8} \left( \frac{x^2 + 8x + 32}{x^2 + 8x + 32} - \frac{8x + 32}{x^2 + 8x + 32} \right) \, dx \] This simplifies to: \[ I = \int_{0}^{8} 1 \, dx - \int_{0}^{8} \frac{8x + 32}{x^2 + 8x + 32} \, dx \] ### Step 2: Evaluate the First Integral The first integral is straightforward: \[ \int_{0}^{8} 1 \, dx = [x]_{0}^{8} = 8 - 0 = 8 \] ### Step 3: Simplify the Second Integral Now we focus on the second integral: \[ \int_{0}^{8} \frac{8x + 32}{x^2 + 8x + 32} \, dx \] We can factor out the 8: \[ = 8 \int_{0}^{8} \frac{x + 4}{x^2 + 8x + 32} \, dx \] ### Step 4: Substitution Let \( t = x^2 + 8x + 32 \). Then, differentiating gives: \[ dt = (2x + 8) \, dx \implies dx = \frac{dt}{2x + 8} \] We also need to change the limits. When \( x = 0 \), \( t = 32 \) and when \( x = 8 \), \( t = 160 \). ### Step 5: Change of Variables Now we substitute: \[ \int_{0}^{8} \frac{x + 4}{x^2 + 8x + 32} \, dx = \int_{32}^{160} \frac{\frac{t - 32}{2} + 4}{t} \cdot \frac{dt}{2x + 8} \] This requires solving for \( x \) in terms of \( t \). However, we can also directly evaluate: \[ = \int_{32}^{160} \frac{dt}{t} \] ### Step 6: Evaluate the Logarithm Integral The integral \( \int \frac{dt}{t} \) gives: \[ \int_{32}^{160} \frac{dt}{t} = \ln(160) - \ln(32) = \ln\left(\frac{160}{32}\right) = \ln(5) \] ### Step 7: Combine Results Now we can combine the results: \[ I = 8 - 8 \cdot \ln(5) \] ### Step 8: Final Calculation Using the approximate value \( \ln(5) \approx 1.609 \): \[ I \approx 8 - 8 \cdot 1.609 = 8 - 12.872 = -4.872 \] ### Final Result Thus, the value of the integral is: \[ I = 8 - 8 \ln(5) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

The value of the integral int_(0)^(2)x[x]dx

Let f(x)=int _( x )^(2) (dy)/(sqrt(1+ y ^(3))). The value of the integral int _(0)^(2) xf (x ) dx is equal to:

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

The value of the integral int_(0)^(2) (log(x^(2)+2))/((x+2)^(2)) , dx is

The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

The value of the integral I=int_(0)^(a) (x^(4))/((a^(2)+x^(2))^(4))dx is

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

The value of the integral int_-2^2(dx)/(x+1)^3 is

The value of the integral I=int_(0)^(pi)(x)/(1+tan^(6)x)dx, (x not equal to (pi)/(2) ) is equal to