Home
Class 12
MATHS
The variable x satisfying the equation |...

The variable `x` satisfying the equation `|sinxcosx|+sqrt(2+tan^2+cot^2x)=sqrt(3)` belongs to the interval `[0,pi/3]` (b) `(pi/3,pi/3)` (c) `[(3pi)/4,pi]` (d) none-existent

A

`"belongs to "[0, (pi)/(3)]`

B

`"belongs to "((pi)/(3),(pi)/(2))`

C

`"belongs to "[(3pi)/(4),pi)`

D

does not exist

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x in (0,pi/2) satisfying the equation, (sqrt3-1)/sin x+ (sqrt3+1)/cosx=4sqrt2 is -

One of the root equation cosx-x+1/2=0 lies in the interval (0,pi/2) (b) (-pi/(2,0)) (c) (pi/2,pi) (d) (pi,(3pi)/2)

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx) is (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

The number of solution(s) of the equation cos2theta=(sqrt(2)+1)(costheta-1/(sqrt(2))) , in the interval (-pi/4,(3pi)/4), is 4 (b) 1 (c) 2 (d) 3

The value of c in Lagranges theorem for the function f(x)=logsinx in the interval [pi/6,(5pi)/6] is (a) pi/4 (b) pi/2 (c) (2pi)/3 (d) none of these

The least positive solution of cot(pi/(3sqrt3) sin2x)=sqrt3 lie (a) (0,pi/6) (b) (pi/9,pi/6) (c) (pi/12,pi/9) (d) (pi/3,pi/2)

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx), is pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

f(x)=sin+sqrt(3)cosx is maximum when x= pi/3 (b) pi/4 (c) pi/6 (d) 0

The range of f(x)=sin^(-1)(sqrt(x^2+x+1)) i s (a) (0,pi/2) (b) (0,pi/3) (c) [pi/3,pi/2] (d) [pi/6,pi/3]

Let Ssub(0,pi) denote the set of values of x satisfying the equation 8^1+|cos x|+cos^2x+|cos^(3x| tooo)=4^3 . Then, S= {pi//3} b. {pi//3,""2pi//3} c. {-pi//3,""2pi//3} d. {pi//3,""2pi//3}