Home
Class 12
MATHS
if f(x) = e^x^(-1/2) , x ne 0 and f(0)...

if ` f(x) = e^x^(-1/2) , x ne 0` and f(0) =0 then f'(0) is

A

not defined

B

1

C

0

D

2

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

if f(x)=e^(-1/x^2),x!=0 and f (0)=0 then f'(0) is

If f''(x) = sec^(2) x and f (0) = f '(0) = 0 then:

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

The function f(x)= xcos(1/x^2) for x != 0, f(0) =1 then at x = 0, f(x) is

Consider the function defined on [0,1] rarr R , f(x) =(sinx- xcosx)/(x^(2)), if x ne 0 and f(0) =0 int _(0)^(1)f(x) is equal to

Let f(x) = {:{ (x sin""(1/x) , x ne 0) , ( k , x = 0):} then f(x) is continuous at x = 0 if

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

Let f(x) = ax^(2) - bx + c^(2), b ne 0 and f(x) ne 0 for all x in R . Then

If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x) , then f(x) is, (given f(0) = 0)

If f(x)=x-(1)/(x), x ne 0 then f(x^(2)) equals.