Home
Class 12
MATHS
The value of the integral int(-1)^(1)(dx...

The value of the integral `int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x))` is equal to

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`pi`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-1}^{1} \frac{dx}{(1+x^2)(1+e^x)}, \] we can use the property of definite integrals which states that \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a+b-x) \, dx. \] In our case, \( a = -1 \) and \( b = 1 \), so \( a + b = 0 \). Therefore, we can write: \[ I = \int_{-1}^{1} \frac{dx}{(1+x^2)(1+e^x)} = \int_{-1}^{1} \frac{dx}{(1+(-x)^2)(1+e^{-x})}. \] Since \( (-x)^2 = x^2 \), we have: \[ I = \int_{-1}^{1} \frac{dx}{(1+x^2)(1+e^{-x})}. \] Now, we can express \( 1 + e^{-x} \) as: \[ 1 + e^{-x} = \frac{e^x + 1}{e^x}. \] Thus, we can rewrite the integral as: \[ I = \int_{-1}^{1} \frac{e^x \, dx}{(1+x^2)(e^x + 1)}. \] Now, we can add the two expressions for \( I \): \[ 2I = \int_{-1}^{1} \left( \frac{1}{(1+x^2)(1+e^x)} + \frac{e^x}{(1+x^2)(e^x + 1)} \right) dx. \] Combining the fractions gives: \[ 2I = \int_{-1}^{1} \frac{1 + e^x}{(1+x^2)(1+e^x)} \, dx = \int_{-1}^{1} \frac{1}{1+x^2} \, dx. \] Now we can evaluate the integral: \[ \int_{-1}^{1} \frac{1}{1+x^2} \, dx. \] This integral represents the area under the curve of the function \( \frac{1}{1+x^2} \) from -1 to 1, which is known to be: \[ \int \frac{1}{1+x^2} \, dx = \tan^{-1}(x). \] Evaluating this from -1 to 1 gives: \[ \tan^{-1}(1) - \tan^{-1}(-1) = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}. \] Thus, we have: \[ 2I = \frac{\pi}{2} \implies I = \frac{\pi}{4}. \] Therefore, the value of the integral is: \[ \boxed{\frac{\pi}{4}}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value fo the integral I=int_(0)^(oo)(dx)/((1+x^(2020))(1+x^(2))) is equal to kpi , then the value of 16k is equal to

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

The value of the integral int_-2^2(dx)/(x+1)^3 is

The value of the integral int_(0)^(1) (1)/((1+x^(2))^(3//2))dx is

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of the integral inte^(x^(2)+(1)/(x))(2x^(2)-(1)/(x)+1)dx is equal to (where C is the constant of integration)

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -