Home
Class 12
MATHS
Consider int(3x^(4)+2x^(2)+1)/(sqrt(x^(4...

Consider `int(3x^(4)+2x^(2)+1)/(sqrt(x^(4)+x^(2)+1))dx=f(x)`. If `f(1)=sqrt3`, then `(f(2))^(2)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral and find the function \( f(x) \) based on the provided information. Let's go through the steps one by one. ### Step 1: Set up the integral We start with the integral: \[ f(x) = \int \frac{3x^4 + 2x^2 + 1}{\sqrt{x^4 + x^2 + 1}} \, dx \] ### Step 2: Simplify the integrand To simplify the integrand, we can multiply and divide by \( x \): \[ f(x) = \int \frac{(3x^4 + 2x^2 + 1)x}{x \sqrt{x^4 + x^2 + 1}} \, dx = \int \frac{3x^5 + 2x^3 + x}{\sqrt{x^6 + x^4 + x^2}} \, dx \] ### Step 3: Substitute for easier integration Let: \[ T = x^6 + x^4 + x^2 \] Then, differentiate \( T \): \[ \frac{dT}{dx} = 6x^5 + 4x^3 + 2x \] Thus, we can express \( dx \) in terms of \( dT \): \[ dx = \frac{dT}{6x^5 + 4x^3 + 2x} \] ### Step 4: Rewrite the integral in terms of \( T \) Now, we can rewrite the integral: \[ f(x) = \int \frac{1}{\sqrt{T}} \cdot \frac{dT}{6x^5 + 4x^3 + 2x} \] ### Step 5: Integrate The integral of \( \frac{1}{\sqrt{T}} \) is: \[ \int \frac{1}{\sqrt{T}} \, dT = 2\sqrt{T} + C \] Thus, \[ f(x) = 2\sqrt{x^6 + x^4 + x^2} + C \] ### Step 6: Use the given condition to find \( C \) We know that \( f(1) = \sqrt{3} \): \[ f(1) = 2\sqrt{1^6 + 1^4 + 1^2} + C = 2\sqrt{3} + C \] Setting this equal to \( \sqrt{3} \): \[ 2\sqrt{3} + C = \sqrt{3} \] Thus, solving for \( C \): \[ C = \sqrt{3} - 2\sqrt{3} = -\sqrt{3} \] ### Step 7: Write the final expression for \( f(x) \) Now we have: \[ f(x) = 2\sqrt{x^6 + x^4 + x^2} - \sqrt{3} \] ### Step 8: Calculate \( f(2) \) Now we need to find \( f(2) \): \[ f(2) = 2\sqrt{2^6 + 2^4 + 2^2} - \sqrt{3} \] Calculating the terms: \[ 2^6 = 64, \quad 2^4 = 16, \quad 2^2 = 4 \] Thus, \[ f(2) = 2\sqrt{64 + 16 + 4} - \sqrt{3} = 2\sqrt{84} - \sqrt{3} \] ### Step 9: Find \( (f(2))^2 \) Now we compute \( (f(2))^2 \): \[ (f(2))^2 = (2\sqrt{84} - \sqrt{3})^2 = 4 \cdot 84 + 3 - 8\sqrt{84}\sqrt{3} \] Calculating: \[ = 336 + 3 - 8\sqrt{252} = 339 - 8\sqrt{252} \] ### Final Answer Thus, the value of \( (f(2))^2 \) is: \[ \boxed{336} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int (x^(2)-1)/(x^(3)sqrt(2x^(4)-2x^(2)+1))dx=

Let int(x^(3)+x^(2)+x)/(sqrt(12x^(3)+15x^(2)+20x))dx=f(x) where f(1)=(sqrt(47))/(30). If (f(2))^(2) is equal to (p)/(255) , then the value of p is equal to

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

If f(x)=sqrt(1-sin2x), then f'(x) equals

Evaluate: int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx

Evaluate int (x^(2)-sqrt(3x)+1)/(x^(4)-x^(2)+1)dx

int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

If f((3x-4)/(3x+4))=x+2 , then int f(x)dx is equal to