Home
Class 12
MATHS
if f(x) =x^(2) + (x^(2))/(1+x^(2)) + (x...

if ` f(x) =x^(2) + (x^(2))/(1+x^(2)) + (x^(2))/((1+x^(2))^(2)) +……" upto" oo ` , then

A

`lim_(xrarr0)f(x)` does not exist

B

`f(x)` is continuous but not differentiable at x = 0

C

f(x) is discontinuous at x = 0

D

f(x) is differentiable at x = 0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^2+(x^2)/(1+x^2)+(x^2)/((1+x^2)^2)+ ....oo term then at x=0,f(x)

f (x) = lim _(x to oo) (x ^(2) + 2 (x+1)^(2n))/((x+1) ^(2n+1) + x^(2) +1),n in N and g (x) =tan ((1)/(2)sin ^(-1)((2f (x))/(1+f ^(2) (x)))), then lim_(x to -3) ((x ^(2) +4x +3))/(sin (x+3) g (x)) is equal to:

Evaluate : 1^(2) + 2 ^(2) x + 3 ^(2) x ^(2) + 4 ^(2) x ^(3) …….. upto infinite terms for |x| lt 1.

If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo then

If 2f(x^2)+3f(1/x^2)=x^2-1 , then f(x^2) is

If |x|gt1 ,then sum of the series (1)/(1+x)+(2)/(1+x^(2))+(2^(2))/(1+x^(4))+(2^(3))/(1+x^(8))+"......"" upto terms "oo is (1)/(x-lambda) ,then the value of lambda is

If f(x) = (1 + x)/(1 - x) Prove that ((f(x) f(x^(2)))/(1 + [f(x)]^(2))) = (1)/(2)

if |x| oo)(1+x)(1+x^2)(1+x^4)........(1+x^(2n))=

Statement 1: lim_(xto oo)(1/(x^(2))+2/(x^(2))+3/(x^(2))+…………..+x/(x^(2)))=lim_(xto oo)1/(x^(2))+………….+lim_(xto oo)x/(x^(2))=0 Statement 2: lim_(xtoa)(f_(1)(x)+f_(2)(x)+………..+f_(n)(x))=lim_(xtoa)f_(1)(x)+………….+lim_(xtoa)f_(n)(x) provided each limit exists individually.

Show that X^((1)/(2))*X^((1)/(4))*X^((1)/(8)) ... Upto oo = X