Home
Class 12
MATHS
Suppose cos^(2)y.(dy)/(dx)=sin(x+y)+sin(...

Suppose `cos^(2)y.(dy)/(dx)=sin(x+y)+sin(x-y), |x| le (pi)/(2) and |y|le(pi)/(2).` If `y((pi)/(3))=-(pi)/(2),` then `y((pi)/(2))` is

A

0

B

`(pi)/(4)`

C

`-(pi)/(4)`

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given differential equation step by step, we start with the equation: \[ \cos^2 y \frac{dy}{dx} = \sin(x+y) + \sin(x-y) \] ### Step 1: Simplify the Right Side Using the sine addition and subtraction formulas, we can rewrite the right side: \[ \sin(x+y) + \sin(x-y) = 2 \sin x \cos y \] Thus, our equation becomes: \[ \cos^2 y \frac{dy}{dx} = 2 \sin x \cos y \] ### Step 2: Separate Variables We can separate the variables by dividing both sides by \(\cos^2 y\) and multiplying by \(dx\): \[ \frac{dy}{\cos y} = 2 \sin x \, dx \] ### Step 3: Integrate Both Sides Now we integrate both sides: \[ \int \frac{dy}{\cos y} = \int 2 \sin x \, dx \] The left side integrates to: \[ \int \sec y \, dy = \ln |\sec y + \tan y| + C_1 \] The right side integrates to: \[ \int 2 \sin x \, dx = -2 \cos x + C_2 \] Thus, we have: \[ \ln |\sec y + \tan y| = -2 \cos x + C \] where \(C = C_2 - C_1\). ### Step 4: Exponentiate to Remove the Logarithm Exponentiating both sides gives: \[ |\sec y + \tan y| = e^{-2 \cos x + C} = K e^{-2 \cos x} \] where \(K = e^C\). ### Step 5: Solve for y We can express this as: \[ \sec y + \tan y = K e^{-2 \cos x} \] ### Step 6: Use Initial Condition We are given the initial condition \(y\left(\frac{\pi}{3}\right) = -\frac{\pi}{2}\). We need to find \(K\): At \(x = \frac{\pi}{3}\): \[ \sec\left(-\frac{\pi}{2}\right) + \tan\left(-\frac{\pi}{2}\right) \text{ is undefined.} \] However, we can evaluate \(K\) using the limit as \(y\) approaches \(-\frac{\pi}{2}\): As \(y \to -\frac{\pi}{2}\): \[ \sec y \to 0 \quad \text{and} \quad \tan y \to -\infty \] This means: \[ K e^{-2 \cos\left(\frac{\pi}{3}\right)} = K e^{-2 \cdot \frac{1}{2}} = K e^{-1} \] ### Step 7: Find \(y\left(\frac{\pi}{2}\right)\) Now we need to find \(y\left(\frac{\pi}{2}\right)\): At \(x = \frac{\pi}{2}\): \[ \sec y + \tan y = K e^{-2 \cdot 0} = K \] As \(y\) approaches \(0\): \[ \sec(0) + \tan(0) = 1 + 0 = 1 \] Thus, we find: \[ K = 1 \] So we have: \[ \sec y + \tan y = e^{-2 \cos x} \] ### Final Step: Conclusion Finally, substituting \(x = \frac{\pi}{2}\): \[ \sec y + \tan y = 1 \] This implies: \[ y = 0 \] Thus, the value of \(y\left(\frac{\pi}{2}\right)\) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos x (dy)/(dx)-y sin x = 6x, (0 lt x lt (pi)/(2)) and y((pi)/(3))=0 , then y((pi)/(6)) is equal to :-

If y=y(x) and (2+sinx)/(y+1)((dy)/(dx))=-cosx ,y(0)=1, then y(pi/2)=

Solve x (dy)/(dx)sin(y/x)+x-ysin(y/x)=0 given y(1)=pi/2

Find (dy)/(dx)" for "y=sin^(-1) (cos x), x in (0, pi)cup (pi, 2pi).

If 2 sin x. cos y=1, then (d ^(2)y)/(dx ^(2)) at ((pi)/(4), (pi)/(4)) is …….

cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

(dy)/(dx) ((1+ cos x)/(y)) =- sin x and f ((pi)/(2)) =-1, then f (0) is:

(dy)/(dx) ((1+ cos x)/(y)) =- sin x and f ((pi)/(2)) =-1, then f (0) is:

If y= y(x) ( 2 _ cos x ) /( y+1) (( dy )/(dx)) =- sin x, y (0) =1 then y((pi)/(2)) equal ____.

If y=cos(sinx^2) ,then at x=sqrt((pi)/(2)) , (dy)/(dx)=