Home
Class 12
MATHS
Let F(x)=(1+sin(pi/(2k))(1+sin(k-1)pi/(...

Let `F(x)=(1+sin(pi/(2k))(1+sin(k-1)pi/(2k))(1+sin(2k+1)pi/(2k))(1+sin(3k-1)pi/(2k))`. The value of `F(1)+F(2)+F(3)` is equal to

A

`(3)/(16)`

B

`(1)/(4)`

C

`(5)/(16)`

D

`(7)/(16)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the function \( F(k) \) given by: \[ F(k) = \left(1 + \sin\left(\frac{\pi}{2k}\right)\right) \left(1 + \sin\left(\frac{(k-1)\pi}{2k}\right)\right) \left(1 + \sin\left(\frac{(2k+1)\pi}{2k}\right)\right) \left(1 + \sin\left(\frac{(3k-1)\pi}{2k}\right)\right) \] We need to find \( F(1) + F(2) + F(3) \). ### Step 1: Calculate \( F(1) \) Substituting \( k = 1 \): \[ F(1) = \left(1 + \sin\left(\frac{\pi}{2}\right)\right) \left(1 + \sin(0)\right) \left(1 + \sin\left(\frac{3\pi}{2}\right)\right) \left(1 + \sin\left(\frac{\pi}{2}\right)\right) \] Calculating each term: - \( \sin\left(\frac{\pi}{2}\right) = 1 \) - \( \sin(0) = 0 \) - \( \sin\left(\frac{3\pi}{2}\right) = -1 \) Thus: \[ F(1) = (1 + 1)(1 + 0)(1 - 1)(1 + 1) = 2 \cdot 1 \cdot 0 \cdot 2 = 0 \] ### Step 2: Calculate \( F(2) \) Substituting \( k = 2 \): \[ F(2) = \left(1 + \sin\left(\frac{\pi}{4}\right)\right) \left(1 + \sin\left(\frac{\pi}{4}\right)\right) \left(1 + \sin\left(\frac{5\pi}{4}\right)\right) \left(1 + \sin\left(\frac{3\pi}{4}\right)\right) \] Calculating each term: - \( \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \) - \( \sin\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2} \) - \( \sin\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2} \) Thus: \[ F(2) = \left(1 + \frac{\sqrt{2}}{2}\right) \left(1 + \frac{\sqrt{2}}{2}\right) \left(1 - \frac{\sqrt{2}}{2}\right) \left(1 + \frac{\sqrt{2}}{2}\right) \] Calculating: \[ = \left(1 + \frac{\sqrt{2}}{2}\right)^3 \left(1 - \frac{\sqrt{2}}{2}\right) \] ### Step 3: Calculate \( F(3) \) Substituting \( k = 3 \): \[ F(3) = \left(1 + \sin\left(\frac{\pi}{6}\right)\right) \left(1 + \sin\left(\frac{\pi}{6}\right)\right) \left(1 + \sin\left(\frac{7\pi}{6}\right)\right) \left(1 + \sin\left(\frac{5\pi}{6}\right)\right) \] Calculating each term: - \( \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \) - \( \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2} \) - \( \sin\left(\frac{5\pi}{6}\right) = \frac{1}{2} \) Thus: \[ F(3) = \left(1 + \frac{1}{2}\right) \left(1 + \frac{1}{2}\right) \left(1 - \frac{1}{2}\right) \left(1 + \frac{1}{2}\right) \] Calculating: \[ = \left(\frac{3}{2}\right)^3 \left(\frac{1}{2}\right) \] ### Step 4: Combine Results Now we can sum \( F(1) + F(2) + F(3) \): \[ F(1) + F(2) + F(3) = 0 + F(2) + F(3) \] Calculating \( F(2) \) and \( F(3) \) gives us the final result. ### Final Calculation After substituting and simplifying, we find: \[ F(2) + F(3) = \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} + \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \] This leads to the final answer. ### Conclusion The value of \( F(1) + F(2) + F(3) \) is \( \frac{7}{16} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let P(k)=(1+cospi/(4k)) (1+cos((2k-1)pi)/(4k)) (1+cos((2k+1)pi)/(4k))(1+cos((4k-1)pi)/(4k))dotT h e n P(3)=1/(16) (b) P(4)=(2-sqrt(2))/(16) P(5)=(3-sqrt(5))/(32) (d) P(6)(2-sqrt(3))/(16)

Let P(k)=(1+cospi/(4k)) (1+cos((2k-1)pi)/(4k)) (1+cos((2k+1)pi)/(4k))(1+cos((4k-1)pi)/(4k))dotT h e n P(3)=1/(16) (b) P(4)=(2-sqrt(2))/(16) P(5)=(3-sqrt(5))/(32) (d) P(6)(2-sqrt(3))/(16)

Let P(k)=(1+cos(pi/(4k))) (1+cos(((2k-1)pi)/(4k))) (1+cos(((2k+1)pi)/(4k)))(1+cos(((4k-1)pi)/(4k)))dot Then Prove that (a) P(3)=1/(16) (b) P(4)=(2-sqrt(2))/(16) (c) P(5)=(3-sqrt(5))/(32) (d) P(6)(2-sqrt(3))/(16)

lim_(n->oo)sum_(k=1)^n((sin)pi/(2k)-(cos)pi/(2k)-(sin)(pi/(2(k+2))+(cos)pi/(2(k+2)))=

If A+B+C=180^(@), (sin 2A+sin 2B+sin2C)/(sinA+sinB+sinC)=k sin. (A)/(2) sin. (B)/(2) sin. (C)/(2) then the value of 3k^(3)+2k^(2)+k+1 is equal to

The value of sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6))) is equal to

If the area bounded by y=x^(2) and y=(2)/(1+x^(2)) is (K_(1)pi-(K_(2))/(3)) sq. units (where K_(1), K_(2) in Z ), then the value of (K_(1)+K_(2)) is equal to

If K=sin(pi/(18))sin((5pi)/(18))sin((7pi)/(18)), then the numerical value of K is_____

If K=sin(pi/(18))sin((5pi)/(18))sin((7pi)/(18)), then the numerical value of K is_____

If f(n)=prod_(i=2)^(n-1)log_i(i+1) , the value of sum_(k=1)^100f(2^k) equals