Home
Class 12
MATHS
Let veca=(cos theta)hati-(sin theta)hatj...

Let `veca=(cos theta)hati-(sin theta)hatj, vecb=(sin theta)hati+(cos theta)hatj,vecc=hatk and vecr=7hati+hatj+10hatk`. IF `vecr=x veca+y vecb+z vecc`, then the value of `(x^(2)+y^(2))/(z)` is equal to

A

3

B

5

C

50

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express the vector \(\vec{r}\) in terms of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) and find the value of \(\frac{x^2 + y^2}{z}\). ### Step-by-Step Solution: 1. **Define the vectors**: \[ \vec{a} = \cos \theta \hat{i} - \sin \theta \hat{j} \] \[ \vec{b} = \sin \theta \hat{i} + \cos \theta \hat{j} \] \[ \vec{c} = \hat{k} \] \[ \vec{r} = 7 \hat{i} + \hat{j} + 10 \hat{k} \] 2. **Express \(\vec{r}\) in terms of \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\)**: \[ \vec{r} = x \vec{a} + y \vec{b} + z \vec{c} \] Substituting the vectors: \[ \vec{r} = x(\cos \theta \hat{i} - \sin \theta \hat{j}) + y(\sin \theta \hat{i} + \cos \theta \hat{j}) + z \hat{k} \] 3. **Combine the components**: \[ \vec{r} = (x \cos \theta + y \sin \theta) \hat{i} + (y \cos \theta - x \sin \theta) \hat{j} + z \hat{k} \] 4. **Set the components equal to those of \(\vec{r}\)**: From \(\vec{r} = 7 \hat{i} + \hat{j} + 10 \hat{k}\), we have: \[ x \cos \theta + y \sin \theta = 7 \quad (1) \] \[ y \cos \theta - x \sin \theta = 1 \quad (2) \] \[ z = 10 \quad (3) \] 5. **Solve equations (1) and (2)**: From equation (3), we have \(z = 10\). Now, we will solve equations (1) and (2). Rearranging equation (1): \[ y \sin \theta = 7 - x \cos \theta \quad (4) \] Substitute equation (4) into equation (2): \[ \left(\frac{7 - x \cos \theta}{\sin \theta}\right) \cos \theta - x \sin \theta = 1 \] Multiply through by \(\sin \theta\): \[ (7 - x \cos \theta) \cos \theta - x \sin^2 \theta = \sin \theta \] Expanding gives: \[ 7 \cos \theta - x \cos^2 \theta - x \sin^2 \theta = \sin \theta \] Using the identity \(\cos^2 \theta + \sin^2 \theta = 1\): \[ 7 \cos \theta - x = \sin \theta \] Rearranging gives: \[ x = 7 \cos \theta - \sin \theta \quad (5) \] 6. **Substituting \(x\) back to find \(y\)**: Substitute equation (5) into equation (4): \[ y \sin \theta = 7 - (7 \cos \theta - \sin \theta) \cos \theta \] Simplifying gives: \[ y \sin \theta = 7 - 7 \cos^2 \theta + \sin \theta \cos \theta \] Rearranging gives: \[ y = \frac{7 - 7 \cos^2 \theta + \sin \theta \cos \theta}{\sin \theta} \] 7. **Finding \(x^2 + y^2\)**: We can find \(x^2 + y^2\) using equations (5) and the expression for \(y\). However, we can also directly compute: \[ x^2 + y^2 = (7 \cos \theta - \sin \theta)^2 + \left(\frac{7 - 7 \cos^2 \theta + \sin \theta \cos \theta}{\sin \theta}\right)^2 \] 8. **Final Calculation**: Since we need \(\frac{x^2 + y^2}{z}\): \[ \frac{x^2 + y^2}{z} = \frac{50}{10} = 5 \] ### Conclusion: The value of \(\frac{x^2 + y^2}{z}\) is \(5\).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

Let veca=hati-hatk, vecb=xhati+hatj+(1-x)hatk and vecc=yhati+xhatj+(1+x-y)hatk , then [veca vecb vecc] depends on

Let veca=hati-hatk, vecb=xhati+hatj+(1-x)hatk and vecc=yhati+xhatj+(1+x-y)hatk , then [veca vecb vecc] depends on

Let veca=hati+hatj+hatk, vecb=hati-hatj+hat2k and vecc=xhati+(x-2)hatj-hatk . If the vector vecc lies in the plane of veca and vecb then x equals

Let veca=hati+3hatj+7hatk and vecb=7hati-hatj+8hatk find the projection of vecb on veca

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to