Home
Class 12
MATHS
If f(x)=sin^(-1)""(2*(3)^(x))/(1+9^(x)),...

If `f(x)=sin^(-1)""(2*(3)^(x))/(1+9^(x))`, then `f'(-(1)/(2))` is equal to

A

`sqrt3log_(e)sqrt3`

B

`-sqrt3log_(e)sqrt3`

C

`-sqrt3log_(e)3`

D

`sqrt3log_(e)3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f'(-\frac{1}{2}) \) for the function \( f(x) = \sin^{-1}\left(\frac{2 \cdot 3^x}{1 + 9^x}\right) \). ### Step 1: Rewrite the function We start with the function: \[ f(x) = \sin^{-1}\left(\frac{2 \cdot 3^x}{1 + 9^x}\right) \] Notice that \( 9^x = (3^2)^x = (3^x)^2 \). Thus, we can rewrite the function as: \[ f(x) = \sin^{-1}\left(\frac{2 \cdot 3^x}{1 + (3^x)^2}\right) \] ### Step 2: Use the identity for sine We can use the identity for sine: \[ \sin(2\theta) = \frac{2\tan(\theta)}{1 + \tan^2(\theta)} \] Let \( \theta = \tan^{-1}(3^x) \). Then: \[ f(x) = \sin^{-1}(\sin(2\theta)) = 2\theta = 2\tan^{-1}(3^x) \] ### Step 3: Differentiate the function Now we differentiate \( f(x) \): \[ f'(x) = 2 \cdot \frac{d}{dx}(\tan^{-1}(3^x)) \] Using the derivative of \( \tan^{-1}(u) \): \[ \frac{d}{dx}(\tan^{-1}(u)) = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = 3^x \) and \( \frac{du}{dx} = 3^x \ln(3) \). Therefore: \[ f'(x) = 2 \cdot \frac{1}{1 + (3^x)^2} \cdot (3^x \ln(3)) \] This simplifies to: \[ f'(x) = \frac{2 \cdot 3^x \ln(3)}{1 + 9^x} \] ### Step 4: Evaluate at \( x = -\frac{1}{2} \) Now we need to evaluate \( f'(-\frac{1}{2}) \): \[ f'(-\frac{1}{2}) = \frac{2 \cdot 3^{-\frac{1}{2}} \ln(3)}{1 + 9^{-\frac{1}{2}}} \] Calculating \( 3^{-\frac{1}{2}} = \frac{1}{\sqrt{3}} \) and \( 9^{-\frac{1}{2}} = \frac{1}{3} \): \[ f'(-\frac{1}{2}) = \frac{2 \cdot \frac{1}{\sqrt{3}} \ln(3)}{1 + \frac{1}{3}} = \frac{2 \cdot \frac{1}{\sqrt{3}} \ln(3)}{\frac{4}{3}} = \frac{2 \cdot 3}{4 \sqrt{3}} \ln(3) = \frac{\sqrt{3}}{2} \ln(3) \] ### Final Result Thus, the value of \( f'(-\frac{1}{2}) \) is: \[ \frac{\sqrt{3}}{2} \ln(3) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x)= sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f '(0) is equal to:

If f (x) = sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f (0) is equal to :

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x) = (x-1)/(x+1) , then f(2) is equal to

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If y=f(x) satisfies the differential equation (dy)/(dx)+(2x)/(1+x^(2))y=(3x^(2))/(1+x^(2)) where f(1)=1 , then f(2) is equal to

f: { 1, 2, 3, 4} -> {1, 4, 9, 16} and g: {1, 4. 9, 16) ->{1,1/2,1/3,1/4} are two bijective functions such that x_1 gt x_2 => f(x_1) lt f(x_2),g(x_1) gt g(x_2) then f^-1(g^-1(1/2)) is equal to

If f(x)=sin^(-1) ((2x)/(1+x^2)) then f(x) is differentiable on

If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)=0, then f(1) is equal to :