Home
Class 12
MATHS
If P=[(lambda,0),(7,1)] and Q=[(4,0),(-7...

If `P=[(lambda,0),(7,1)]` and `Q=[(4,0),(-7,1)]` such that `P^(2)=Q`, then `P^(3)` is equal to

A

`[(-8,0),(21,1)]`

B

`[(10,1),(8,0)]`

C

`[(7,0),(8,1)]`

D

`[(6,0),(4,1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( P^3 \) given that \( P^2 = Q \) where: \[ P = \begin{pmatrix} \lambda & 0 \\ 7 & 1 \end{pmatrix}, \quad Q = \begin{pmatrix} 4 & 0 \\ -7 & 1 \end{pmatrix} \] ### Step 1: Calculate \( P^2 \) To find \( P^2 \), we will multiply \( P \) by itself: \[ P^2 = P \cdot P = \begin{pmatrix} \lambda & 0 \\ 7 & 1 \end{pmatrix} \cdot \begin{pmatrix} \lambda & 0 \\ 7 & 1 \end{pmatrix} \] Calculating the product: - First row, first column: \( \lambda \cdot \lambda + 0 \cdot 7 = \lambda^2 \) - First row, second column: \( \lambda \cdot 0 + 0 \cdot 1 = 0 \) - Second row, first column: \( 7 \cdot \lambda + 1 \cdot 7 = 7\lambda + 7 \) - Second row, second column: \( 7 \cdot 0 + 1 \cdot 1 = 1 \) Thus, we have: \[ P^2 = \begin{pmatrix} \lambda^2 & 0 \\ 7\lambda + 7 & 1 \end{pmatrix} \] ### Step 2: Set \( P^2 \) equal to \( Q \) Since \( P^2 = Q \), we equate: \[ \begin{pmatrix} \lambda^2 & 0 \\ 7\lambda + 7 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ -7 & 1 \end{pmatrix} \] From this, we can derive two equations: 1. \( \lambda^2 = 4 \) 2. \( 7\lambda + 7 = -7 \) ### Step 3: Solve for \( \lambda \) From the first equation: \[ \lambda^2 = 4 \implies \lambda = 2 \text{ or } \lambda = -2 \] From the second equation: \[ 7\lambda + 7 = -7 \implies 7\lambda = -14 \implies \lambda = -2 \] Thus, we have \( \lambda = -2 \). ### Step 4: Substitute \( \lambda \) back into \( P \) Now substituting \( \lambda = -2 \) into matrix \( P \): \[ P = \begin{pmatrix} -2 & 0 \\ 7 & 1 \end{pmatrix} \] ### Step 5: Calculate \( P^3 \) Now, we need to find \( P^3 = P^2 \cdot P \). We already calculated \( P^2 \): \[ P^2 = \begin{pmatrix} 4 & 0 \\ -7 & 1 \end{pmatrix} \] Now we calculate \( P^3 \): \[ P^3 = P^2 \cdot P = \begin{pmatrix} 4 & 0 \\ -7 & 1 \end{pmatrix} \cdot \begin{pmatrix} -2 & 0 \\ 7 & 1 \end{pmatrix} \] Calculating the product: - First row, first column: \( 4 \cdot -2 + 0 \cdot 7 = -8 \) - First row, second column: \( 4 \cdot 0 + 0 \cdot 1 = 0 \) - Second row, first column: \( -7 \cdot -2 + 1 \cdot 7 = 14 + 7 = 21 \) - Second row, second column: \( -7 \cdot 0 + 1 \cdot 1 = 1 \) Thus, we have: \[ P^3 = \begin{pmatrix} -8 & 0 \\ 21 & 1 \end{pmatrix} \] ### Final Answer Therefore, \( P^3 \) is: \[ \begin{pmatrix} -8 & 0 \\ 21 & 1 \end{pmatrix} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If P=[{:(,1,2),(,2,-1):}] and Q=[{:(,1,0),(,2,1):}] then compute : (i) P^2-Q^2 (ii) (P+Q) (P-Q) Is (P+Q) (P-Q) =P^2-Q^2 true for matrix algebra?

Let P=[(1, 0, 0),(3, 1, 0),(9, 3, 1)]Q=[q_(ij)] and Q=P^5+I_3 then (q_21+q_31)/q_32 is equal to (A) 12 (B) 8 (C) 10 (D) 20

Let A=[(1, 2),(3, 4)] and B=[(p,q),(r,s)] are two matrices such that AB = BA and r ne 0 , then the value of (3p-3s)/(5q-4r) is equal to

Let P=[[1,0,0],[4,1,0],[16,4,1]] and I be the identity matrix of order 3 . If Q = [q_()ij ] is a matrix, such that P^(50)-Q=I , then (q_(31)+q_(32))/q_(21) equals

If z = x - iy and z'^(1/3) = p +iq, then 1/(p^2+q^2)(x/p+y/q) is equal to

If z = x - iy and z'^(1/3) = p +iq, then 1/(p^2+q^2)(x/p+y/q) is equal to

If p(x)=ax^(2)+bx and q(x)=lx^(2)+mx+n with p(1)=q(1), p(2)-q(2)=1 , and p(3)-q(3)=4 , then p(4)-q(4) is equal to

If p >1 and q >1 are such that log(p+q)=logp+logq , then the value of log(p-1)+log(q-1) is equal to (a) 0 (b) 1 (c) 2 (d) none of these

If p >1a n dq >1 are such that log(p+q)=logp+logq , then the value of log(p-1)+"log"(q-1) is equal to 0 (b) 1 (c) 2 (d) none of these

(3p^(2)qr^(3)) xx (- 4p^(3)q^(2)r^(2))xx (7pq^(2)r) is equal to