Home
Class 12
MATHS
For a differentiable function f(x), if f...

For a differentiable function `f(x)`, if `f'(2)=2 and f'(3)=1`, then the value of `lim_(xrarr0)(f(x^(2)+x+2)-f(2))/(f(x^(2)-x+3)-f(3))` is equal to

A

2

B

1

C

`-2`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem step by step, we will use the information given about the differentiable function \( f(x) \) and apply L'Hôpital's Rule since we encounter a \( \frac{0}{0} \) form. ### Step 1: Identify the limit expression We need to evaluate the limit: \[ \lim_{x \to 0} \frac{f(x^2 + x + 2) - f(2)}{f(x^2 - x + 3) - f(3)} \] ### Step 2: Substitute \( x = 0 \) Substituting \( x = 0 \) in the limit expression: - The numerator becomes \( f(0^2 + 0 + 2) - f(2) = f(2) - f(2) = 0 \). - The denominator becomes \( f(0^2 - 0 + 3) - f(3) = f(3) - f(3) = 0 \). Thus, we have a \( \frac{0}{0} \) indeterminate form. ### Step 3: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the denominator separately. The limit now becomes: \[ \lim_{x \to 0} \frac{f'(x^2 + x + 2) \cdot (2x + 1)}{f'(x^2 - x + 3) \cdot (2x - 1)} \] ### Step 4: Substitute \( x = 0 \) again Now we substitute \( x = 0 \) into the new limit expression: - The numerator becomes \( f'(0^2 + 0 + 2) \cdot (2 \cdot 0 + 1) = f'(2) \cdot 1 = f'(2) \). - The denominator becomes \( f'(0^2 - 0 + 3) \cdot (2 \cdot 0 - 1) = f'(3) \cdot (-1) = -f'(3) \). ### Step 5: Use the given values of derivatives We know from the problem statement: - \( f'(2) = 2 \) - \( f'(3) = 1 \) Substituting these values into the limit gives: \[ \lim_{x \to 0} \frac{f'(2)}{-f'(3)} = \frac{2}{-1} = -2 \] ### Conclusion Thus, the value of the limit is: \[ \boxed{-2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f : R to R be a differentiable function satisfying f'(3) + f'(2) = 0 , Then underset(x to 0) lim ((1+f(3+x)-f(3))/(1+f(2-x)-f(2)))^(1/x) is equal to

Let f:R to R be a differentiable function such that f(2)=2 . Then, the value of lim_(xrarr2) int_(2)^(f(x))(4t^3)/(x-2) dt , is

If f'(2)=2, f''(2) =1 , then lim_(xrarr2)(2x^2-4f'(x))/(x-2) , is

If f(x) is derivable at x=3 and f'(3)=2 , then value of lim_(hto0)(f(3+h^(2))-f(3-h^(2)))/(2h^(2)) is less than

If f(1) =g(1)=2 , then lim_(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-g(x)) is equal to

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

Let f''(x) be continuous at x = 0 and f"(0) = 4 then value of lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)

If f is a linear function and f(-2)=11,f(5)=-2, and f(x)=4.3 , what is the value of x?

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

If f(x) is a twice differentiable function and given that f(1)=2,f(2)=5 and f(3)=10 then