Home
Class 12
MATHS
Let vec(V(1))=hati+ahatj+hatk, vec(V(2))...

Let `vec(V_(1))=hati+ahatj+hatk, vec(V_(2))=hatj+ahatk` and `vec(V_(3))=ahati+hatk, AA a gt 0.` If `[(vec(V_(1)),vec(V_(2)),vec(V_(3)))]` is minimum, then the value of a is

A

`sqrt3`

B

`3`

C

`(1)/(3)`

D

`(1)/(sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \) such that the determinant formed by the vectors \( \vec{V_1} \), \( \vec{V_2} \), and \( \vec{V_3} \) is minimized. Let's go through the steps systematically. ### Step 1: Define the vectors We have: - \( \vec{V_1} = \hat{i} + a\hat{j} + \hat{k} \) - \( \vec{V_2} = 0\hat{i} + \hat{j} + a\hat{k} \) - \( \vec{V_3} = a\hat{i} + 0\hat{j} + \hat{k} \) ### Step 2: Set up the determinant The determinant of the matrix formed by these vectors can be expressed as: \[ D = \begin{vmatrix} 1 & a & 1 \\ 0 & 1 & a \\ a & 0 & 1 \end{vmatrix} \] ### Step 3: Calculate the determinant To compute the determinant, we can use the rule of Sarrus or cofactor expansion. Let's expand along the first row: \[ D = 1 \cdot \begin{vmatrix} 1 & a \\ 0 & 1 \end{vmatrix} - a \cdot \begin{vmatrix} 0 & a \\ a & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 0 & 1 \\ a & 0 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} 1 & a \\ 0 & 1 \end{vmatrix} = 1 \) 2. \( \begin{vmatrix} 0 & a \\ a & 1 \end{vmatrix} = 0 \cdot 1 - a \cdot a = -a^2 \) 3. \( \begin{vmatrix} 0 & 1 \\ a & 0 \end{vmatrix} = 0 \cdot 0 - 1 \cdot a = -a \) Putting these back into the determinant: \[ D = 1 \cdot 1 - a \cdot (-a^2) + 1 \cdot (-a) = 1 + a^3 - a \] Thus, we have: \[ D = a^3 - a + 1 \] ### Step 4: Find the critical points To find the minimum value of \( D \), we take the derivative with respect to \( a \): \[ D' = 3a^2 - 1 \] Setting the derivative equal to zero to find critical points: \[ 3a^2 - 1 = 0 \implies 3a^2 = 1 \implies a^2 = \frac{1}{3} \implies a = \frac{1}{\sqrt{3}} \text{ (since } a > 0\text{)} \] ### Step 5: Verify if it's a minimum To confirm that this critical point is a minimum, we can find the second derivative: \[ D'' = 6a \] Substituting \( a = \frac{1}{\sqrt{3}} \): \[ D'' = 6 \cdot \frac{1}{\sqrt{3}} > 0 \] Since \( D'' > 0 \), this indicates that \( D \) has a local minimum at \( a = \frac{1}{\sqrt{3}} \). ### Conclusion Thus, the value of \( a \) that minimizes the determinant is: \[ \boxed{\frac{1}{\sqrt{3}}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(A)=hati +hat j and vec(B)=hati-hatj The value of (vec(A)+vec(B)).(vec(A)-vec(B)) is :

Consider three vectors vec(V_(1))=(sin theta)hati+(cos theta)hatj+(a-3)hatk, vec(V_(2))=(sin theta+cos theta)+hati+(cos theta-sin theta)hatj and +(b-4)hatk vec(V_(3))=(cos theta)hati+(sin theta)hatj+(c-5)hatk . If the resultant of vec(V_(1)),vec(V_(2)) and vec(V_(3)) is equal to lambda hati , where theta in [-pi, pi] and a, b, c in N, then the number of quadruplets (a, b, c, theta) are

If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) + 7hat(k) what is vec(F) . vec(v) ?

If vec(OA)=2hati-hatj+hatk, vec(OB)=hati-3hatj-5hatk and vec(OC)=3hati-3hatj-3hatk then show that CB is perpendicular to AC.

If vec(alpha)=2hati+3hatj-hatk, vec(beta)=-hati+2hatj-4hatk, vecgamma=hati+hatj+hatk , then (vec(alpha)xxvec(beta)).(vec(alpha)xxvec(gamma)) is equal to

In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 hatj + hatj + 2 hatk, " then " | vec(CA)|=

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=5hati+4hatj-3hatk . Find vec(PQ) and the direction cosines of vec(PQ) .

Let vec a=hati -2 hatj + 3 hatk, vec b = 3 hati + 3 hatj -hat k and vec c=d hati + hatj + (2d-1) hat k ." If " vec c is parallel to the plane of the vectors veca and vec b, " then " 11 d =

Given |vec(A)_(1)|=2,|vec(A)_(2)|=3 and |vec(A)_(1)+vec(A)_(2)|=3 . Find the value of (vec(A)_(1)+2vec(A)_(2)).(3vec(A)_(1)-4vec(A)_(2)) .

Let vec(U)=hati+hatj,vecV=hati-hatjand vec(W)=3hati+5hatj+3hatk. If hat(n) is a unit vector such that vec(U) . hat(n) =0 and vec(V) . hat(n) =0 , then |vecW.hatn| is equal to