Home
Class 12
MATHS
Let a in (0,(pi)/(2)) and f(x)=sqrt(x^(2...

Let `a in (0,(pi)/(2))` and `f(x)=sqrt(x^(2)+x)+(tan^(2)alpha)/(sqrt(x^(2)+x)), x gt 0`. If the least value of `f(x)` is `2sqrt3`, then `alpha` is equal to

A

`(pi)/(3)`

B

`(pi)/(8)`

C

`(pi)/(6)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\alpha\) such that the least value of the function \(f(x) = \sqrt{x^2 + x} + \frac{\tan^2 \alpha}{\sqrt{x^2 + x}}\) is \(2\sqrt{3}\). ### Step-by-step Solution: 1. **Define the function**: \[ f(x) = \sqrt{x^2 + x} + \frac{\tan^2 \alpha}{\sqrt{x^2 + x}} \] 2. **Apply the AM-GM inequality**: According to the Arithmetic Mean-Geometric Mean inequality (AM-GM), we can write: \[ A + B \geq 2\sqrt{AB} \] where \(A = \sqrt{x^2 + x}\) and \(B = \frac{\tan^2 \alpha}{\sqrt{x^2 + x}}\). 3. **Set up the inequality**: \[ \sqrt{x^2 + x} + \frac{\tan^2 \alpha}{\sqrt{x^2 + x}} \geq 2\sqrt{\sqrt{x^2 + x} \cdot \frac{\tan^2 \alpha}{\sqrt{x^2 + x}}} \] Simplifying the right-hand side: \[ 2\sqrt{\tan^2 \alpha} = 2\tan \alpha \] 4. **Establish the relationship**: Thus, we have: \[ f(x) \geq 2\tan \alpha \] 5. **Given condition**: We know from the problem that the least value of \(f(x)\) is \(2\sqrt{3}\). Therefore, we can set up the equation: \[ 2\tan \alpha = 2\sqrt{3} \] 6. **Simplify the equation**: Dividing both sides by 2: \[ \tan \alpha = \sqrt{3} \] 7. **Find the angle**: We know that: \[ \tan \frac{\pi}{3} = \sqrt{3} \] Therefore, we conclude: \[ \alpha = \frac{\pi}{3} \] ### Final Answer: \[ \alpha = \frac{\pi}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

let f(x)=sqrt(1+x^2) then

Let f (x) =x + sqrt(x^(2) +2x) and g (x) = sqrt(x^(2) +2x)-x, then:

If f(x)=sqrt(x-4sqrt(x-4))+tan^(-1)((1-2x)/(2+x)), AA 4 lt x lt 8 , then the value of f'(5) is equal to

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

f(x)=sqrt(1-sqrt(1-x^2) then at x=0 ,value of f(x) is

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

If f (x)=((x+1)^(7)sqrt(1+x ^(2)))/((x^(2) -x+1)^(6)), then the value of f'(0) is equal to:

If f:RtoR,f(x)=(sqrt(x^(2)+1)-3x)/(sqrt(x^(2)+1)+x) then find the range of f(x) .

If f(x)=(a+sqrt(a^2-x^2)+x)/(sqrt(a^2-x^2)+a-x) where a>0 then f'(0) has the value equal to

Let f(x) = tan x, x in (-pi/2,pi/2)and g(x) = sqrt(1-x^2) then g(f(x)) is