Home
Class 12
MATHS
A normal is drawn to the ellipse (x^(2))...

A normal is drawn to the ellipse `(x^(2))/(9)+y^(2)=1` at the point `(3cos theta, sin theta)` where `0lt theta lt(pi)/(2)`. If N is the foot of the perpendicular from the origin O to the normal such that ON = 2, then `theta` is equal to

A

`(pi)/(4)`

B

`(pi)/(12)`

C

`(pi)/(3)`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions provided in the video transcript and derive the necessary equations to find the value of \(\theta\). ### Step 1: Identify the ellipse and the point on it The given ellipse is: \[ \frac{x^2}{9} + y^2 = 1 \] The point on the ellipse is given as \((3\cos\theta, \sin\theta)\). ### Step 2: Find the parameters \(a\) and \(b\) From the equation of the ellipse, we can identify: \[ a^2 = 9 \implies a = 3 \] \[ b^2 = 1 \implies b = 1 \] ### Step 3: Write the equation of the normal The equation of the normal to the ellipse at the point \((a\cos\theta, b\sin\theta)\) is given by: \[ ax \sec\theta + by \csc\theta = a^2 - b^2 \] Substituting the values of \(a\) and \(b\): \[ 3x \sec\theta + y \csc\theta = 9 - 1 \] \[ 3x \sec\theta + y \csc\theta = 8 \] ### Step 4: Rearranging the normal equation Rearranging gives us: \[ 3x \sec\theta + y \csc\theta - 8 = 0 \] ### Step 5: Find the perpendicular distance from the origin to the normal The perpendicular distance \(d\) from the origin \((0, 0)\) to the line \(Ax + By + C = 0\) is given by: \[ d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}} \] Here, \(A = 3\sec\theta\), \(B = \csc\theta\), and \(C = -8\). Thus, the distance from the origin is: \[ d = \frac{|0 + 0 - 8|}{\sqrt{(3\sec\theta)^2 + (\csc\theta)^2}} = \frac{8}{\sqrt{9\sec^2\theta + \csc^2\theta}} \] ### Step 6: Set the distance equal to 2 According to the problem, this distance \(d\) is equal to 2: \[ \frac{8}{\sqrt{9\sec^2\theta + \csc^2\theta}} = 2 \] ### Step 7: Solve for \(\theta\) Cross-multiplying gives: \[ 8 = 2\sqrt{9\sec^2\theta + \csc^2\theta} \] Dividing both sides by 2: \[ 4 = \sqrt{9\sec^2\theta + \csc^2\theta} \] Squaring both sides: \[ 16 = 9\sec^2\theta + \csc^2\theta \] ### Step 8: Substitute \(\sec^2\theta\) and \(\csc^2\theta\) Using the identities \(\sec^2\theta = 1 + \tan^2\theta\) and \(\csc^2\theta = 1 + \cot^2\theta\): \[ 16 = 9(1 + \tan^2\theta) + (1 + \cot^2\theta) \] ### Step 9: Simplify the equation This simplifies to: \[ 16 = 9 + 9\tan^2\theta + 1 + \cot^2\theta \] \[ 16 = 10 + 9\tan^2\theta + \cot^2\theta \] \[ 6 = 9\tan^2\theta + \cot^2\theta \] ### Step 10: Use \(\cot^2\theta = \frac{1}{\tan^2\theta}\) Let \(x = \tan^2\theta\): \[ 6 = 9x + \frac{1}{x} \] Multiplying through by \(x\): \[ 6x = 9x^2 + 1 \] \[ 9x^2 - 6x + 1 = 0 \] ### Step 11: Solve the quadratic equation Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 9 \cdot 1}}{2 \cdot 9} \] \[ x = \frac{6 \pm \sqrt{36 - 36}}{18} = \frac{6}{18} = \frac{1}{3} \] ### Step 12: Find \(\tan^2\theta\) Thus, \(\tan^2\theta = \frac{1}{3}\), which gives: \[ \tan\theta = \frac{1}{\sqrt{3}} \] ### Step 13: Find \(\theta\) This corresponds to: \[ \theta = \frac{\pi}{6} \] ### Final Answer Thus, the value of \(\theta\) is: \[ \theta = \frac{\pi}{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos theta - sin theta = (1)/(5) , where 0 lt theta lt (pi)/(4) , then

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

If rsintheta=3, r=4(1+sintheta) where 0<=theta<=2pi then theta equal to

sin 5 theta = cos 2 theta , 0^(@) lt theta lt 180^(@). Find value of theta

cot^(2) theta - (1 + sqrt3) cot theta + sqrt3 = 0,0 lt theta lt (pi)/(2)

If (sin 3theta)/(cos 2theta)lt 0 , then theta lies in

Solve 2 sin theta cos theta = cos theta. ( 0^(@) < theta lt 360^(@)).

Solve : 5cos2theta+2cos^2(theta/2)+1=0,-pi lt theta lt pi

tangents are drawn to x^2+y^2=a^2 at the points A(acos theta, a sin theta) and B(a cos (theta +pi/3), a sin (theta +pi/3)) Locus of intersection of these tangents is