Home
Class 12
MATHS
Let f(x) be a differentiable function su...

Let f(x) be a differentiable function such that `int_(t)^(t^(2))xf(x)dx=(4)/(3)t^(3)-(4t)/(3)AA t ge0`, then f(1) is equal to

A

4

B

`(4)/(3)`

C

3

D

`(8)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given integral equation: \[ \int_{t}^{t^2} x f(x) \, dx = \frac{4}{3} t^3 - \frac{4}{3} t \] for \( t \geq 0 \). We need to find \( f(1) \). ### Step 1: Differentiate both sides with respect to \( t \) Using the Fundamental Theorem of Calculus and the Leibniz rule for differentiation under the integral sign, we differentiate the left-hand side: \[ \frac{d}{dt} \left( \int_{t}^{t^2} x f(x) \, dx \right) = t^2 f(t^2) \cdot \frac{d}{dt}(t^2) - t f(t) \cdot \frac{d}{dt}(t) = 2t^2 f(t^2) - t f(t) \] Now differentiate the right-hand side: \[ \frac{d}{dt} \left( \frac{4}{3} t^3 - \frac{4}{3} t \right) = 4t^2 - \frac{4}{3} \] ### Step 2: Set the derivatives equal to each other We equate the derivatives from both sides: \[ 2t^2 f(t^2) - t f(t) = 4t^2 - \frac{4}{3} \] ### Step 3: Rearrange the equation Rearranging gives: \[ 2t^2 f(t^2) = t f(t) + 4t^2 - \frac{4}{3} \] ### Step 4: Solve for \( f(t) \) Now, we will isolate \( f(t) \): \[ f(t) = \frac{2t^2 f(t^2) - 4t^2 + \frac{4}{3}}{t} \] ### Step 5: Evaluate at \( t = 1 \) To find \( f(1) \), we substitute \( t = 1 \): \[ f(1) = 2 \cdot 1^2 f(1^2) - 4 \cdot 1^2 + \frac{4}{3} \] This simplifies to: \[ f(1) = 2f(1) - 4 + \frac{4}{3} \] ### Step 6: Solve for \( f(1) \) Rearranging gives: \[ f(1) - 2f(1) = -4 + \frac{4}{3} \] This simplifies to: \[ -f(1) = -4 + \frac{4}{3} \] Converting \(-4\) to a fraction gives: \[ -4 = -\frac{12}{3} \] Thus: \[ -f(1) = -\frac{12}{3} + \frac{4}{3} = -\frac{8}{3} \] So: \[ f(1) = \frac{8}{3} \] ### Final Answer Thus, the value of \( f(1) \) is: \[ \boxed{\frac{8}{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

If f:RrarrR,f(x) is a differentiable function such that (f(x))^(2)=e^(2)+int_(0)^(x)(f(t)^(2)+(f'(t))^(2))dtAAx inR . The values f(1) can take is/are

Let f:[1,oo] be a differentiable function such that f(1)=2. If 6int_1^xf(t)dt=3xf(x)-x^3 for all xgeq1, then the value of f(2) is

Let f:[1,oo] be a differentiable function such that f(1)=2. If 6int_1^xf(t)dt=3xf(x)-x^3 for all xgeq1, then the value of f(2) is

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x)e^(-t^(3)).f(x-t^(3))dt . Then find f(x) .

Let f:R to R be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

If f(x)=t^(2)+(3)/(2)t , then f(q-1)=