Home
Class 12
MATHS
If f(x)=sinx+cosx, g(x)=x^(2)-1, then g...

If `f(x)=sinx+cosx, g(x)=x^(2)-1,` then g(f(x)) is invertible in the domain

A

`[0, (pi)/(2)]`

B

`[-(pi)/(4), (pi)/(4)]`

C

`[-(pi)/(2),(pi)/(2)]`

D

`[0, pi]`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sinx+cosx and g(x)=x^2-1 , then g(f (x)) is invertible in the domain .

If f(x)=sinx+cosx and g(x)=x^2-1 , then g(f (x)) is invertible in the domain .

If f(x)=sinx" and "g(x)=sgn sinx , then g'(1) equals

Let g(x)=f(sin x)+ f(cosx), then g(x) is decreasing on:

If f(x)=sinx, g(x)=cosx and h(x)=cos(cosx), then the integral I=int f(g(x)).f(x).h(x)dx simplifies to -lambda sin^(2)(cosx)+C (where, C is the constant of integration). The value of lambda is equal to

If f(x)=|x-1|" and "g(x)=f(f(f(x))) , then for xgt2,g'(x) is equal to

Let f(x)=2x-sinx and g(x) = 3^(sqrtx) . Then

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

If g(f(x))=|sinx|a n df(g(x))=(sinsqrt(x))^2 , then f(x)=sin^2x ,g(x)=sqrt(x) f(x)=sinx ,g(x)=|x| f(x=x^2,g(x)=sinsqrt(x) fa n dg cannot be determined

If f(x) = {sinx , x lt 0 and cosx-|x-1| , x leq 0 then g(x) = f(|x|) is non-differentiable for