Home
Class 12
MATHS
The value of lim(xrarr0)((1+6x)^((1)/(3)...

The value of `lim_(xrarr0)((1+6x)^((1)/(3))-(1+4x)^((1)/(2)))/(x^(2))` is equal to

A

`1`

B

`2`

C

`-1`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{(1 + 6x)^{\frac{1}{3}} - (1 + 4x)^{\frac{1}{2}}}{x^2}, \] we start by substituting \(x = 0\): 1. **Substituting \(x = 0\)**: \[ \frac{(1 + 6 \cdot 0)^{\frac{1}{3}} - (1 + 4 \cdot 0)^{\frac{1}{2}}}{0^2} = \frac{1 - 1}{0} = \frac{0}{0}. \] This gives us an indeterminate form \(0/0\), so we can apply L'Hôpital's Rule. 2. **Applying L'Hôpital's Rule**: Differentiate the numerator and the denominator separately: - The numerator is \( (1 + 6x)^{\frac{1}{3}} - (1 + 4x)^{\frac{1}{2}} \). - The denominator is \( x^2 \). Differentiate the numerator: \[ \frac{d}{dx}[(1 + 6x)^{\frac{1}{3}}] = \frac{1}{3}(1 + 6x)^{-\frac{2}{3}} \cdot 6 = 2(1 + 6x)^{-\frac{2}{3}}, \] \[ \frac{d}{dx}[(1 + 4x)^{\frac{1}{2}}] = \frac{1}{2}(1 + 4x)^{-\frac{1}{2}} \cdot 4 = 2(1 + 4x)^{-\frac{1}{2}}. \] Therefore, the derivative of the numerator is: \[ 2(1 + 6x)^{-\frac{2}{3}} - 2(1 + 4x)^{-\frac{1}{2}}. \] The derivative of the denominator is: \[ \frac{d}{dx}[x^2] = 2x. \] Thus, we have: \[ \lim_{x \to 0} \frac{2(1 + 6x)^{-\frac{2}{3}} - 2(1 + 4x)^{-\frac{1}{2}}}{2x} = \lim_{x \to 0} \frac{(1 + 6x)^{-\frac{2}{3}} - (1 + 4x)^{-\frac{1}{2}}}{x}. \] 3. **Substituting \(x = 0\) again**: Again substituting \(x = 0\): \[ \frac{(1 + 6 \cdot 0)^{-\frac{2}{3}} - (1 + 4 \cdot 0)^{-\frac{1}{2}}}{0} = \frac{1 - 1}{0} = \frac{0}{0}. \] We apply L'Hôpital's Rule again. 4. **Differentiating again**: Differentiate the new numerator: \[ \frac{d}{dx}[(1 + 6x)^{-\frac{2}{3}}] = -\frac{2}{3}(1 + 6x)^{-\frac{5}{3}} \cdot 6 = -4(1 + 6x)^{-\frac{5}{3}}, \] \[ \frac{d}{dx}[(1 + 4x)^{-\frac{1}{2}}] = -\frac{1}{2}(1 + 4x)^{-\frac{3}{2}} \cdot 4 = -2(1 + 4x)^{-\frac{3}{2}}. \] Therefore, the new numerator is: \[ -4(1 + 6x)^{-\frac{5}{3}} + 2(1 + 4x)^{-\frac{3}{2}}. \] The derivative of the denominator \(x\) is \(1\). Thus, we have: \[ \lim_{x \to 0} \left(-4(1 + 6x)^{-\frac{5}{3}} + 2(1 + 4x)^{-\frac{3}{2}}\right). \] 5. **Substituting \(x = 0\) again**: \[ -4(1 + 0)^{-\frac{5}{3}} + 2(1 + 0)^{-\frac{3}{2}} = -4 \cdot 1 + 2 \cdot 1 = -4 + 2 = -2. \] Thus, the value of the limit is: \[ \boxed{-2}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : lim_(xrarr0)((1-x)^(n)-1)/(x)

lim_(xrarr0) ((x+1)^(5)-1)/(x)

lim_(xrarr0)((1-cos x)/x^2)

The value of lim_(xrarr0)(ln(1+2x+4x^(2))+ln(1-2x+4x^(2)))/(secx-cosx) is equal to

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

Evaluate lim_(xrarr0)((1-cosx))/(x^(2))

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

The value of lim_(xrarr0) (x(5^x-1))/(1-cos x) , is

The value of lim_(xrarr0)(log(1+2x))/(5x)+lim_(xrarr2)(x^(4)-2^(4))/(x-2) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to