Home
Class 12
MATHS
Let f(x)=(sinx+3sin3x+5sin5x+3sin7x)/(si...

Let `f(x)=(sinx+3sin3x+5sin5x+3sin7x)/(sin2x+2sin4x+3sin6x)`, wherever defined. If `x_(1)+x_(2)=(pi)/(2)`, where `f(x)` is defined at `x_(1) and x_(2)`, then `f^(2)(x_(1))+f^(2)(x_(2))` is

A

`cos^(2)x`

B

`sin^(2)x`

C

`4`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( f^2(x_1) + f^2(x_2) \) given that \( f(x) = \frac{\sin x + 3\sin 3x + 5\sin 5x + 3\sin 7x}{\sin 2x + 2\sin 4x + 3\sin 6x} \) and \( x_1 + x_2 = \frac{\pi}{2} \). ### Step 1: Simplify \( f(x) \) We start with the function: \[ f(x) = \frac{\sin x + 3\sin 3x + 5\sin 5x + 3\sin 7x}{\sin 2x + 2\sin 4x + 3\sin 6x} \] **Hint:** Look for patterns or identities that can help simplify the numerator and denominator. ### Step 2: Use trigonometric identities Using the identities for sine, we can rewrite parts of the numerator and denominator. 1. **Numerator:** - Rewrite \( 5\sin 5x \) as \( 3\sin 5x + 2\sin 5x \) - Rewrite \( 3\sin 7x \) as \( 2\sin 7x + \sin 7x \) This gives us: \[ \sin x + 3\sin 3x + 3\sin 5x + 2\sin 5x + 2\sin 7x + \sin 7x \] 2. **Denominator:** - Rewrite \( \sin 6x \) as \( 2\sin 4x + \sin 2x \) This gives us: \[ \sin 2x + 2\sin 4x + 3\sin 6x = \sin 2x + 2\sin 4x + 3(2\sin 4x + \sin 2x) \] **Hint:** Try to factor out common terms and apply sine addition formulas where applicable. ### Step 3: Factor and simplify After applying identities and factoring, we find that: \[ f(x) = 2\cos x \] **Hint:** Check if the simplification leads to a form that is easier to evaluate. ### Step 4: Evaluate \( f(x_1) \) and \( f(x_2) \) Given \( x_1 + x_2 = \frac{\pi}{2} \): \[ f(x_1) = 2\cos x_1 \] \[ f(x_2) = 2\cos x_2 = 2\sin x_1 \quad (\text{since } \cos(\frac{\pi}{2} - x) = \sin x) \] ### Step 5: Calculate \( f^2(x_1) + f^2(x_2) \) Now we compute: \[ f^2(x_1) + f^2(x_2) = (2\cos x_1)^2 + (2\sin x_1)^2 \] This simplifies to: \[ = 4\cos^2 x_1 + 4\sin^2 x_1 \] ### Step 6: Use the Pythagorean identity Using the identity \( \cos^2 x + \sin^2 x = 1 \): \[ = 4(\cos^2 x_1 + \sin^2 x_1) = 4 \cdot 1 = 4 \] ### Final Answer Thus, the value of \( f^2(x_1) + f^2(x_2) \) is: \[ \boxed{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

("lim")_(xvec0)(5sinx-7sin2x+3sin3x)/(x^2sinx)

If f(x)={x^2 sin((pi x)/2), |x| =1 then f(x) is

If f(x)= =|{:(sinx+sin2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,sinx,1):}| then the value of int_(0)^(pi//2) f(x)dx , is

Let f(x)={(1-sin^3x)/(3cos^2x) if x pi/2 find a and b. .

If f(x)=(sin^2 x+4sinx+5)/(2sin^2x+8sinx+8) then range of f(x) is

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

f(x) = sin^(-1)(sin x) then (d)/(dx)f(x) at x = (7pi)/(2) is

If f(x)=2(1+sin x), then evaluate f((pi)/(2)) .

Let f(x)= |{:(cosx,sinx,cosx),(cos2x,sin2x,2cos2x),(cos3x,sin3x,3cos3x):}| then find the value of f'((pi)/(2)) .

Function f : [(pi)/(2), (3pi)/(2)] rarr [-1, 1], f(x) = sin x is