Home
Class 12
MATHS
Let f(x)=-x^(2)+x+p, where p is a real n...

Let `f(x)=-x^(2)+x+p`, where p is a real number. If `g(x)=[f(x)] and g(x)` is discontinuous at `x=(1)/(2)`, then p - cannot be (where `[.]` represents the greatest integer function)

A

`(1)/(2)`

B

`(3)/(4)`

C

`(7)/(4)`

D

`-(1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = -x^2 + x + p \) and the greatest integer function \( g(x) = [f(x)] \), where \( [.] \) denotes the greatest integer function. We are given that \( g(x) \) is discontinuous at \( x = \frac{1}{2} \). ### Step 1: Calculate \( f\left(\frac{1}{2}\right) \) First, we need to find the value of \( f\left(\frac{1}{2}\right) \): \[ f\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right) + p \] Calculating this gives: \[ f\left(\frac{1}{2}\right) = -\frac{1}{4} + \frac{1}{2} + p = -\frac{1}{4} + \frac{2}{4} + p = \frac{1}{4} + p \] ### Step 2: Determine the condition for discontinuity of \( g(x) \) The function \( g(x) \) is discontinuous at \( x = \frac{1}{2} \) if \( f\left(\frac{1}{2}\right) \) is an integer. Therefore, we need: \[ \frac{1}{4} + p \text{ must be an integer} \] Let \( k \) be an integer. Then we can write: \[ \frac{1}{4} + p = k \implies p = k - \frac{1}{4} \] ### Step 3: Analyze values of \( p \) From the equation \( p = k - \frac{1}{4} \), we can see that \( p \) will be an integer minus \( \frac{1}{4} \). This means \( p \) can take values like \( k - \frac{1}{4} \) for any integer \( k \). ### Step 4: Identify values of \( p \) that cannot satisfy the condition Now, we need to find a value of \( p \) that cannot be expressed in the form \( k - \frac{1}{4} \). If we set \( p = \frac{1}{2} \): \[ \frac{1}{4} + p = \frac{1}{4} + \frac{1}{2} = \frac{1}{4} + \frac{2}{4} = \frac{3}{4} \] Since \( \frac{3}{4} \) is not an integer, \( g(x) \) will be continuous at \( x = \frac{1}{2} \). ### Conclusion Thus, the value of \( p \) that cannot make \( g(x) \) discontinuous at \( x = \frac{1}{2} \) is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[x](sin kx)^(p) is continuous for real x, then (where [.] represents the greatest integer function)

If f(x)=|x-1|.([x]=[-x]), then (where [.] represents greatest integer function)

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

Discuss continuity of f(x) =[sin x] -[cos x] at x=pi//2, where [.] represent the greatest integer function .

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

Number of points where f(x) = sqrt(x^(2)) +[x] ^(2) , x in [-2,2] is discontinuous is ( where [.] re[presents the greatest interger function )______.