Home
Class 12
MATHS
For a complex number Z. If arg(Z) in (-p...

For a complex number Z. If `arg(Z) in (-pi, pi]`, then `arg{1+cos.(6pi)/(7)+isin.(6pi)/(7)}` is (here `i^(2)=-1`)

A

`(3pi)/(7)`

B

`(2pi)/(7)`

C

`-(2pi)/(7)`

D

`-(3pi)/(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the argument of the complex number \( \omega = 1 + \cos\left(\frac{6\pi}{7}\right) + i \sin\left(\frac{6\pi}{7}\right) \). ### Step-by-Step Solution: 1. **Identify the Complex Number**: We have: \[ \omega = 1 + \cos\left(\frac{6\pi}{7}\right) + i \sin\left(\frac{6\pi}{7}\right) \] 2. **Use Trigonometric Identities**: We can use the identity: \[ 1 + \cos \theta = 2 \cos^2\left(\frac{\theta}{2}\right) \] Here, let \(\theta = \frac{6\pi}{7}\). Therefore: \[ 1 + \cos\left(\frac{6\pi}{7}\right) = 2 \cos^2\left(\frac{6\pi/7}{2}\right) = 2 \cos^2\left(\frac{3\pi}{7}\right) \] 3. **Express \(\sin\) in Terms of \(\cos\)**: We also know: \[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \] Thus: \[ \sin\left(\frac{12\pi}{7}\right) = 2 \sin\left(\frac{6\pi}{7}\right) \cos\left(\frac{6\pi}{7}\right) \] This means: \[ \sin\left(\frac{6\pi}{7}\right) = \sin\left(\pi - \frac{6\pi}{7}\right) = \sin\left(\frac{\pi}{7}\right) \] 4. **Combine Terms**: Now we can rewrite \(\omega\): \[ \omega = 2 \cos^2\left(\frac{3\pi}{7}\right) + i \sin\left(\frac{6\pi}{7}\right) \] This can be factored as: \[ \omega = 2 \cos\left(\frac{3\pi}{7}\right) \left(\cos\left(\frac{3\pi}{7}\right) + i \frac{\sin\left(\frac{6\pi}{7}\right)}{2 \cos\left(\frac{3\pi}{7}\right)}\right) \] 5. **Convert to Polar Form**: The expression inside the parentheses can be recognized as being in the polar form \( r(\cos \theta + i \sin \theta) \), where: \[ r = \sqrt{\left(\cos\left(\frac{3\pi}{7}\right)\right)^2 + \left(\frac{\sin\left(\frac{6\pi}{7}\right)}{2 \cos\left(\frac{3\pi}{7}\right)}\right)^2} \] The argument of \(\omega\) is then: \[ \arg(\omega) = \arg\left(2 \cos\left(\frac{3\pi}{7}\right)\right) + \arg\left(\cos\left(\frac{3\pi}{7}\right) + i \sin\left(\frac{6\pi}{7}\right)\right) \] 6. **Final Argument Calculation**: The argument of \(\omega\) simplifies to: \[ \arg(\omega) = \frac{3\pi}{7} \] ### Conclusion: Thus, the argument of the complex number \( \omega \) is: \[ \arg(\omega) = \frac{3\pi}{7} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For a complex number z, if arg(z) in (-pi, pi], then arg(1+cos.(6pi)/(5)+I sin.(6pi)/(5)) is (here i^(2)-1 )

If z ne 0 be a complex number and "arg"(z)=pi//4 , then

For a complex number Z, if arg Z=(pi)/(4) and |Z+(1)/(Z)|=4 , then the value of ||Z|-(1)/(|Z|)| is equal to

If arg z = pi/4 ,then

Find the value of cos(2pi)/7+cos(4pi)/7+cos(6pi)/7

Prove that cos ((2pi)/7)+ cos ((4pi)/7) + cos ((6pi)/7) = - 1/2

Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos" (6pi)/(5))

The principal value of arg (z) , where z=1+cos((8pi)/5)+i sin((8pi)/5) (where, i=sqrt-1) is given by

If a complex number z satisfies |z| = 1 and arg(z-1) = (2pi)/(3) , then ( omega is complex imaginary number)

Complex number z lies on the curve S-= arg(z+3)/(z+3i) =-(pi)/(4)