Home
Class 12
MATHS
Let f(n)=Sigma(r=1)^(10n)(6+rd) and g(n)...

Let `f(n)=Sigma_(r=1)^(10n)(6+rd) and g(n)=Sigma_(r=1)^(n)(6+rd)`, where `n in N, d ne 0.` If `(f(n))/(g(n))` is independent of n, then d is equal to

A

12

B

`-6`

C

6

D

`-12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the functions \( f(n) \) and \( g(n) \) and then find the ratio \( \frac{f(n)}{g(n)} \) to determine the value of \( d \) such that this ratio is independent of \( n \). ### Step 1: Calculate \( f(n) \) The function \( f(n) \) is defined as: \[ f(n) = \sum_{r=1}^{10n} (6 + rd) \] We can break this summation into two parts: \[ f(n) = \sum_{r=1}^{10n} 6 + \sum_{r=1}^{10n} rd \] Calculating the first part: \[ \sum_{r=1}^{10n} 6 = 6 \cdot 10n = 60n \] Now, for the second part, we have: \[ \sum_{r=1}^{10n} rd = d \sum_{r=1}^{10n} r \] Using the formula for the sum of the first \( m \) natural numbers, \( \sum_{r=1}^{m} r = \frac{m(m+1)}{2} \): \[ \sum_{r=1}^{10n} r = \frac{10n(10n + 1)}{2} \] Thus, we can write: \[ \sum_{r=1}^{10n} rd = d \cdot \frac{10n(10n + 1)}{2} \] Combining both parts, we have: \[ f(n) = 60n + d \cdot \frac{10n(10n + 1)}{2} \] ### Step 2: Calculate \( g(n) \) Now, we calculate \( g(n) \): \[ g(n) = \sum_{r=1}^{n} (6 + rd) \] Similarly, we can break this summation: \[ g(n) = \sum_{r=1}^{n} 6 + \sum_{r=1}^{n} rd \] Calculating the first part: \[ \sum_{r=1}^{n} 6 = 6n \] For the second part: \[ \sum_{r=1}^{n} rd = d \sum_{r=1}^{n} r = d \cdot \frac{n(n + 1)}{2} \] Thus, we can write: \[ g(n) = 6n + d \cdot \frac{n(n + 1)}{2} \] ### Step 3: Find the ratio \( \frac{f(n)}{g(n)} \) Now we find the ratio: \[ \frac{f(n)}{g(n)} = \frac{60n + d \cdot \frac{10n(10n + 1)}{2}}{6n + d \cdot \frac{n(n + 1)}{2}} \] ### Step 4: Simplify the ratio To simplify, we can factor out \( n \) from both the numerator and the denominator: \[ \frac{f(n)}{g(n)} = \frac{n(60 + d \cdot \frac{10(10n + 1)}{2})}{n(6 + d \cdot \frac{(n + 1)}{2})} \] Cancelling \( n \) (assuming \( n \neq 0 \)) gives: \[ \frac{f(n)}{g(n)} = \frac{60 + d \cdot \frac{10(10n + 1)}{2}}{6 + d \cdot \frac{(n + 1)}{2}} \] ### Step 5: Set the ratio independent of \( n \) For the ratio to be independent of \( n \), the coefficients of \( n \) in the numerator and denominator must be equal. Thus, we need to analyze the terms involving \( n \): From the numerator, the coefficient of \( n \) is: \[ d \cdot 50 \] From the denominator, the coefficient of \( n \) is: \[ d \cdot \frac{1}{2} \] Setting these equal gives: \[ 50d = \frac{d}{2} \] ### Step 6: Solve for \( d \) Assuming \( d \neq 0 \), we can divide both sides by \( d \): \[ 50 = \frac{1}{2} \] This leads to: \[ d = -12 \] ### Final Answer Thus, the value of \( d \) is: \[ \boxed{-12} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If Sigma_(r=1)^(n) cos^(-1)x_(r)=0, then Sigma_(r=1)^(n) x_(r) equals

If Sigma_(r=1)^(n) r^4=I(n), " then "Sigma__(r=1)^(n) (2r -1)^4 is equal to

Sigma_(r=0)^(n)(n-r)(.^(n)C_(r))^(2) is equal to

If f(n)=prod_(r=1)^(n)cos r,n in N , then

If Sigma_(r=1)^(n) T_r=n/8(n+1)(n+2)(n+3) then find Sigma_(r=1)^(n) 1/T_r

If Sigma_(r=1)^(2n) sin^(-1) x^(r )=n pi, then Sigma__(r=1)^(2n) x_(r ) is equal to

Find the value of (Sigma_(r=1)^(n) 1/r)/(Sigma_(r=1)^(n) k/((2n-2k+1)(2n-k+1))) .

Prove that Sigma_(r=0)^(n) ""^(n)C_(r).3^(r)=4^(n)

If a = Sigma_(n=1)^(oo) (2n)/(2n-1!),b=Sigma__(n=1)^(oo) (2n)/(2n+1!) then ab equals

Prove that Sigma_(r=1) ""^(n)C_(r).3^(r)=4^(n)