Home
Class 12
MATHS
If A=[(1, 2,3),(4, 5, 6)] and B=[(1, 4),...

If `A=[(1, 2,3),(4, 5, 6)] and B=[(1, 4),(2, 5), (3, 6)]`, then the determinant value of BA is

A

8

B

0

C

`-8`

D

24

Text Solution

AI Generated Solution

The correct Answer is:
To find the determinant value of the product of matrices \( BA \), we will follow these steps: ### Step 1: Define the matrices A and B Given: \[ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \] ### Step 2: Calculate the product \( BA \) To compute \( BA \), we multiply matrix \( B \) with matrix \( A \): \[ BA = B \cdot A = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \] The resulting matrix will be a \( 3 \times 3 \) matrix. We calculate each element of the resulting matrix as follows: - First row: - \( (1 \cdot 1 + 4 \cdot 4) = 1 + 16 = 17 \) - \( (1 \cdot 2 + 4 \cdot 5) = 2 + 20 = 22 \) - \( (1 \cdot 3 + 4 \cdot 6) = 3 + 24 = 27 \) - Second row: - \( (2 \cdot 1 + 5 \cdot 4) = 2 + 20 = 22 \) - \( (2 \cdot 2 + 5 \cdot 5) = 4 + 25 = 29 \) - \( (2 \cdot 3 + 5 \cdot 6) = 6 + 30 = 36 \) - Third row: - \( (3 \cdot 1 + 6 \cdot 4) = 3 + 24 = 27 \) - \( (3 \cdot 2 + 6 \cdot 5) = 6 + 30 = 36 \) - \( (3 \cdot 3 + 6 \cdot 6) = 9 + 36 = 45 \) Thus, the resulting matrix \( BA \) is: \[ BA = \begin{pmatrix} 17 & 22 & 27 \\ 22 & 29 & 36 \\ 27 & 36 & 45 \end{pmatrix} \] ### Step 3: Calculate the determinant of \( BA \) To find the determinant of the matrix \( BA \): \[ \text{det}(BA) = \begin{vmatrix} 17 & 22 & 27 \\ 22 & 29 & 36 \\ 27 & 36 & 45 \end{vmatrix} \] Using the property of determinants, we can perform column operations to simplify the calculation. We can modify the second and third columns: - \( C_2 \rightarrow C_2 - C_1 \) - \( C_3 \rightarrow C_3 - C_1 \) This gives us: \[ \begin{vmatrix} 17 & 22 - 17 & 27 - 17 \\ 22 & 29 - 22 & 36 - 22 \\ 27 & 36 - 27 & 45 - 27 \end{vmatrix} = \begin{vmatrix} 17 & 5 & 10 \\ 22 & 7 & 14 \\ 27 & 9 & 18 \end{vmatrix} \] Next, we apply the operation \( C_3 \rightarrow C_3 - C_2 \): \[ \begin{vmatrix} 17 & 5 & 10 - 5 \\ 22 & 7 & 14 - 7 \\ 27 & 9 & 18 - 9 \end{vmatrix} = \begin{vmatrix} 17 & 5 & 5 \\ 22 & 7 & 7 \\ 27 & 9 & 9 \end{vmatrix} \] ### Step 4: Identify identical columns Now, we see that the second and third columns are identical: \[ \begin{vmatrix} 17 & 5 & 5 \\ 22 & 7 & 7 \\ 27 & 9 & 9 \end{vmatrix} \] Since two columns of the determinant are identical, the determinant is zero: \[ \text{det}(BA) = 0 \] ### Final Answer Thus, the value of the determinant of \( BA \) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(2,-1,3),(4,5,-6):}] and B=[{:(1,2),(3,4),(5,-6):}] then

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

If A={1,2,3,4,5,6,7,8} and B={1,3,4,6,7,8,9} then

If A=[{:(1,2),(4,1),(5,6):}] and B=[{:(1,2),(6,4),(7,3):}] , then varify that (i) (A-B)'=A'-B'

If A=[(1,-2,3),(-4,2,5)] and B=[(2,3),(4,5),(2,1)] , find AB and BA and show that AB!=BA

If A=[{:(0,-1,2),(4,3,-4):}] and B=[{:(4,0),(1,3),(2,6):}] then verify that (i) (A')'=A (ii) (AB)'=B'A'

If [(2,3),(5,7)] [(1,-3),(-2,4)]=[(-4,6),(-9,x)], write the value of x

if A=[{:(1,2,-5),(-3,4,6):}]and B[{:(-2,3,-4),(1,2,3):}]' then find 2A+B.

If A={1,2,3,4,5,6) and B={2,4,5,6,8,9,10} then A DeltaB is equal to